学习工具最快的方法就是在使用的过程中学习,也就是在工作中(解决实际问题中)学习.文章结尾处附完整代码. 一.数据准备  在Pytorch中提供了MNIST的数据,因此我们只需要使用Pytorch提供的数据即可. from torchvision import datasets, transforms# batch_size 是指每次送入网络进行训练的数据量batch_size = 64# MNIST Dataset# MNIST数据集已经集成在pytorch datasets中,可以直接调用t…
内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterable或者是定义了参数组的...~ 参数: params (iterable) – 待优化参数的iterable或者是定义了参数组的...~ torch.optim torch.optim是一个实现了各种优化算法的库.大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法.…
[源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0x01 模型构造 1.1 Module 1.2 成员变量 1.3 _parameters 1.3.1 构建 1.3.2 归类 1.3.3 获取 1.4 Linear 1.4.1 使用 1.4.2 定义 1.4.3 解释 0x02 Optimizer 基类 2.1 初始化 2.2 添加待优化变量 2.…
[源码解析] PyTorch分布式优化器(3)---- 模型并行 目录 [源码解析] PyTorch分布式优化器(3)---- 模型并行 0x00 摘要 0x01 前文回顾 0x02 单机模型 2.1 基本用法 2.2 将模型并行应用到现有模块 2.3 问题与方案 2.3.1 目前状况 2.3.2 解决方案 2.4 通过流水线输入加速 0x03 分布式问题和方案 3.1 思路 3.2 PyTorch 的思路 3.2.1 四大天王 3.2.2 逻辑关系 0x04 PyTorch 分布式优化器 4.…
这是莫凡python学习笔记. 1.构造数据,可以可视化看看数据样子 import torch import torch.utils.data as Data import torch.nn.functional as F import matplotlib.pyplot as plt %matplotlib inline # torch.manual_seed(1) # reproducible LR = 0.01 BATCH_SIZE = 32 EPOCH = 12 # fake datas…
都说MNIST相当于机器学习界的Hello World.最近加入实验室,导师给我们安排了一个任务,但是我才刚刚入门呐!!没办法,只能从最基本的学起. Pytorch是一套开源的深度学习张量库.或者我倾向于把它当成一个独立的深度学习框架.为了写这么一个"Hello World".查阅了不少资料,也踩了不少坑.不过同时也学习了不少东西,下面我把我的代码记录下来,希望能够从中受益更多,同时帮助其他对Pytorch感兴趣的人.代码的注释中有不对的地方欢迎批评指正. 代码进行了注释,应该很方便阅…
上一节中,我们使用autograd的包来定义模型并求导.本节中,我们将使用torch.nn包来构建神经网络. 一个nn.Module包含各个层和一个forward(input)方法,该方法返回output. 上图是一个简单的前馈神经网络.它接受一个输入.然后一层接着一层地传递.最后输出计算的结果. 神经网络模型的训练过程 神经网络的典型训练过程如下: 定义包含一些可学习的参数(或者叫做权重)的神经网络模型. 在数据集上迭代. 通过神经网络处理输入. 计算损失函数(输出结果和正确值的差值大小).…
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误…
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误…
Optimization 随机梯度下降(SGD): 当损失函数在一个方向很敏感在另一个方向不敏感时,会产生上面的问题,红色的点以“Z”字形梯度下降,而不是以最短距离下降:这种情况在高维空间更加普遍. SGD的另一个问题:损失函数容易卡在局部最优或鞍点(梯度为0)不再更新.在高维空间鞍点更加普遍 当模型较大时SGD耗费庞大计算量,添加随机均匀噪声时SGD需要花费大量的时间才能找到极小值. SGD+Momentum: 带动量的SGD,基本思想是:保持一个不随时间变化的速度,并将梯度估计添加到这个速度…