在设计机器学习系统时,一些建议与指导,让我们能明白怎么选择一条最合适,最正确的道路. 当我们要开发或者要改进一个机器学习系统时,我们应该接下来做些什么? try smaller sets of features--是为了防止overfitting. 当你发现你的预测方法不能成功预测时,接下来你该尝试些什么方法,如上图所示,你可以尝试这些方法.但是我们选取这些方法的依据是什么呢?很多人是随意的选取一个尝试,然后花费很多时间来做这件事情,但是接下来却发现这个尝试并不管用.我们会有一些方法(机器学习诊…
假设我们现在想要知道what degree of polynomial to fit to a data set 或者 应该选择什么features 或者 如何选择regularization parameter λ 我们该如何做?----Model selection process 很好的拟合training set并不意味着是一个好的hypothesis 上图是一个overfitting的例子,它能很好的拟合training data,但它不是一个好的预测函数.所以一般来说,the tra…
当有多个features时,无法通过图像来评估hypothesis 当我们的hypothesis只有一个features时,可以通过观察它的图像来看它是否overfitting,但是如果我们有多个features的情况下,就无法通过画出图形来看是否overfitting.我们需要另一种方法来评估我们的函数. 评估hypothesis的标准方法 这儿我们将我们的Dataset分成两部分,一部分用来做为training set(70%),一部分用来做为Test set(30%),mtest表示tes…
容器的成员函数 vs 算法 容器中同名的函数 List: void remove(const T); template<class Comp> void remove_if(Comp); void unique(); template<class Comp> void unique(Comp); void sort(); template<class Comp> void sort(Comp); void merge(list&); template<cl…
参见原书1.5节 构建预测模型的一般流程 问题的日常语言表述->问题的数学语言重述重述问题.提取特征.训练算法.评估算法 熟悉不同算法的输入数据结构:1.提取或组合预测所需的特征2.设定训练目标3.训练模型4.评估模型在训练数据上的性能表现 机器学习:开发一个可以实际部署的模型的全部过程,包括对机器学习算法的理解和实际的操作 通常,有非常切实的原因,导致某些算法被经常使用,了解背后的原因 (1)构造一个机器学习问题审视数据集中的数据,确定需要做何种形式的预测如,这些数据代表什么?如何与预测任务关…
点击获取提取码:7qi1 在学习和研究机器学习的时候,面临令人眼花缭乱的算法,机器学习新手往往会不知所措.本书从算法和Python语言实现的角度,帮助读者认识机器学习. 本书专注于两类核心的"算法族",即惩罚线性回归和集成方法,并通过代码实例来展示所讨论的算法的使用原则.全书共分为7章,详细讨论了预测模型的两类核心算法.预测模型的构建.惩罚线性回归和集成方法的具体应用和实现. 本书主要针对想提高机器学习技能的Python开发人员,帮助他们解决某一特定的项目或是提升相关的技能. 主要内容…
看机器学习看到了回归函数,看了一半看不下去了,看到能用方差进行函数回归,又手痒痒了,自己推公式写代码验证: 常见的最小二乘法是一阶函数回归回归方法就是寻找方差的最小值y = kx + bxi, yiy-yi = kxi+b-yi方差为∑(kxi + b - yi )^2f = k^2∑xi^2 + b^2 + ∑yi^2 +2kb∑xi - 2k∑xi*yi - 2yib求极值需要对其求微分,因为是二元函数,因此使用全微分公式,其极值点应该在两个元的偏微分都为0处δf/δk = 2k∑(xi^2…
参见原书 1.1-1.4节 一.惩罚线性回归模型 基本特性: 1.训练时间快,使用训练好的模型进行预测的时间也快2.应用于高速交易.互联网广告的植入等3.解决回归.分类问题 最重要的特性:能明确指出,哪个变量对预测结果最重要 普通最小二乘法(ordinary least squares,OLS)->惩罚回归方法(OLS主要问题:过拟合) 惩罚回归方法:使自由度与数据规模.问题的复杂度相匹配 核心概念:1.特征工程/特征提取选择哪些变量用于对结果的预测 2.自由度统计学名词,当以样本的统计量估计总…
  在这里首先先简单把我对函数的功能的理解阐述一下,方便后面的分析:Glib_Line函数实现的功能是通过参数给定(x1,y1,x2,y2,color),来确定起点(x1,y1)和终点(x2,y2)两点之间的一条直线,并通过color参数来确定这条直线的颜色.这里这条语句的算法重点在于如何给像素点填充对应的颜色来画出任意直线,至于颜色具体值的确定会在后续的配色原理中阐述.首先先来看两幅图片: 他们是相同的一个图片,图片2是图片1放大后的情况. 我们平时在LCD上画直线还无所谓,但是如果画斜线,由…
参见原书2.1-2.2节 新数据集就像一个包装好的礼物,它充满了承诺和希望! 但是直到你打开前,它都保持神秘! 一.基础问题的架构.术语,机器学习数据集的特性 通常,行代表实例,列代表属性特征 属性,实例中用于预测的数据其他名称:预测因子 特征 独立变量 输入 标签,需要预测的数据其他名称:结果 目标 依赖变量 响应 2.1.1属性和标签的不同类型决定模型的选择数值变量 类别变量/因素变量 惩罚回归算法只能处理数值变量:SVM 核方法 K最近邻转换:类别变量->数值变量 当标签是数值的,就叫作回…
一.多层语法糖本质 """ 语法糖会将紧挨着的被装饰对象名字当参数自动传入装饰器函数中""" def outter(func_name): print('加载outter') def wrapper(*args, **kwargs): print('执行了wrapper') res = func_n…
算法导论的第四章对于divide-conquer进行了阐述, 感觉这本书特别在,实际给出的例子并不多,更多其实是一些偏向数学性质的分析, 最重要的是告诉你该类算法分析的一般性策略. 估计 首先是估计算法的时间复杂度,这里我感觉大多数情况下该类算法的时间复杂度可以由两种策略来完成. master method 这种方式简单, 准确, 个人认为一般能用这种尽量使用这种. 对于常数 a >= 1, b > 1, T(n) = a T ( n / b ) + f(n), 也就是说算法T对于规模为n的问…
函数作为参数,相当于C++的函数指针, C#的委托 for_each函数参数: #include <iostream> #include <algorithm> #include <vector> #include "FuncParamTest.h" #include "../../Core/ContainerUtil.h" using namespace std; void print(int elem) { cout <…
import pandas as pd import matplotlib.pyplot as plt import statsmodels as sm from statsmodels.graphics.tsaplots import plot_acf,plot_pacf import numpy as np discfile = r'D:\期末论文安排\日线数据\renminbi_ouyuan.xlsx' forecastnum = 5 data = pd.read_excel(discfi…
例子: static void Main(string[] args) { int[] a1 = { 1, 2, 3, 4, 5 }; int[] a2 = { 1, 2, 3, 4, 5 }; double[] a3 = { 1.1, 2.2, 3.3, 4.4, 5.5 }; double[] a4 = { 1.1, 2.2, 3.3, 4.4, 5.5 }; var result = Zip(a1, a2); Console.WriteLine(string.Join(",",…
#include<stdio.h> #include<stdlib.h> int main(){ setbuf(stdout,NULL); int move(int,int); int value,n; int result; printf("Input the value:\n"); scanf("%x",&value); printf("How to move?\n"); scanf("%d"…
转自:http://www.cnblogs.com/mindwind/p/5231986.html Raft 协议的易理解性描述 虽然 Raft 的论文比 Paxos 简单版论文还容易读了,但论文依然发散的比较多,相对冗长.读完后掩卷沉思觉得还是整理一下才会更牢靠,变成真正属于自己的.这里我就借助前面黑白棋落子里第一种极简思维来描述和概念验证下 Raft 协议的工作方式. 在一个由 Raft 协议组织的集群中有三类角色: Leader(领袖) Follower(群众) Candidate(候选人…
下载libssl-1_1.dll  丢到apache目录下的bin目录下(貌似要32位的)…
<button id="test">点我</button> <script> var button={ clicked:false, click:function(){ debugger; this.clicked=true; console.assert(!(button.clicked),"The button has been clicked"); } } var elem=document.getElementById(&…
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 2.1.1 训练模型 2.1.2 加载模型 2.2 分割高维向量 2.3 迭代训练 2.3.1 Flink Stream迭代功能 2.3.2 迭代构建 2.3.2.1 迭代的输入 2.3.2.2 迭代的反馈 2.3.3 迭代体 CalcTask / ReduceTask 2.3.3.1 迭代初始化…
转自:http://blog.csdn.net/u013455341/article/details/46747343 在<机器学习基石>这门课里面也进入了第一讲的内容,这次学习到的是Percetron Learning Algorithm--感知学习算法. PLA用于解决的是对于二维或者高维的 线性可分 问题的分类,最终将问题分为两类--是或者不是. 注意PLA一定是针对线性可分的问题,即可以找到一条线,或者超平面去分开是和不是的两堆数据,如果不是线性可分. 可以通过后来的Pocket改正算…
试验项目:1.字符与ASCLL码 2.运算符与表达式的运用 3.顺序结构应用程序 4.数学函数的算法描述 5.鸡兔同笼的算法描述 6.确定坐标的算法描述 姓名:熊承启 实验地点:514实验室 1.字符与ASCLL码 (1)实验目的: 了解字符在计算机中以Ascall码方式表达: 了解字符的类型,字长其数的表示范围: 熟练使用scanf()输入用户用户提供的数据: 熟练使用printf()输出变量. (2)问题描述 从键盘输入一个大写字母,要求转换成小写字母输出,并输出这个小写字母相邻的两个字母:…
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scoring参数:使用cross-validation的模型评估工具,依赖于内部的scoring策略.见下. Metric函数:metrics模块实现了一些函数,用来评估预测误差.见下. 2. scoring参数 模型选择和评估工具,例如: grid_search.GridSearchCV 和 cross…
很多人在决定是否看一部电影之前都会去豆瓣看下评分作为参考,看完电影也会给一个自己的分数.每个人对每个商品或者电影或是音乐都有一个心理的分数,这个分数标明用户是否对这个内容满意.作为内容的提供方,如果可以预测出每个用户对于内容的心理分数,就能更好的理解用户,并给用户提供好的内容推荐.今天就介绍下如何通过ALS矩阵分解算法实现用户对于音乐或者电影的评分预测. ALS算法介绍 ALS算法是基于模型的推荐算法,基本思想是对稀疏矩阵进行模型分解,评估出缺失项的值,以此来得到一个基本的训练模型.然后依照此模…
前言 本篇我们将总结的算法为Microsoft时序算法的结果预测值,是上一篇文章微软数据挖掘算法:Microsoft 时序算法(5)的一个总结,上一篇我们已经基于微软案例数据库的销售历史信息表,利用Microsoft时序算法对其结果进行了预测,并且相应形成了折线预测图和模型依赖属性,有兴趣的同学可以点击查看,但是上篇文章的能给出的只是一个描述趋势的折线图,从图中我们能分析出的知识也只能通过语言描述,而这里面缺少更确切的数据支撑,作为一个凡事以数据说话的年代显然这是不够的,本篇我们将根据上一篇的预…
1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? 一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26. 女儿:长的帅不帅? 母亲:挺帅的. 女儿:收入高不? 母亲:不算很高,中等情况. 女儿:是公务员不? 母亲:是,在税务局上班呢. 女儿:那好,我去见见. 决策过程: 这个女孩的决策过程就是典型的分类树决策.…
函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. 传入函数 函数的本身也可以作为参数. Python内建的mapreduce的函数.(来源于谷歌的,后来被道格这家伙开源了,成为当今处理大数据最火热的hadoop中的计算模型---MapReduce) 我们先看map.map()函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序…
关于函数的return li = [11,22,33,44] def f1(arg): arg.append(55) li = f1(li) print(li) 因为li = f1(li) 实际赋值的是f1的return,那么在这种情况下函数f1并未定义return,所以默认返回None 因此li的值应该是none 如果是 li = [11,22,33,44] def f1(arg): arg.append(55) f1(li) print(li) 因为函数传递的参数实际是参数的引用,因此在函数…
学习建立GM(1,1)灰色预测评估模型,解决实际问题: SARS疫情对某些经济指标的影响问题 一.问题的提出 2003 年的 SARS 疫情对中国部分行业的经济发展产生了一定影响,特别是对部分 疫情较严重的省市的相关行业所造成的影响是显著的,经济影响主要分为直接经济影响 和间接影响.直接经济影响涉及商品零售业.旅游业.综合服务等行业.很多方面难以 进行定量的评估,现仅就 SARS 疫情较重的某市商品零售业.旅游业和综合服务业的影 响进行定量的评估分析. 究竟 SARS 疫情对商品零售业.旅游业和…
from:http://www.cnblogs.com/kemaswill/archive/2013/04/01/2993583.html 在时间序列中,我们需要基于该时间序列当前已有的数据来预测其在之后的走势,三次指数平滑(Triple/Three Order Exponential Smoothing,Holt-Winters)算法可以很好的进行时间序列的预测. 时间序列数据一般有以下几种特点:1.趋势(Trend)  2. 季节性(Seasonality). 趋势描述的是时间序列的整体走势…