一.过滤器使用场景:比如有如下几个需求:1.原本有10亿个号码,现在又来了10万个号码,要快速准确判断这10万个号码是否在10亿个号码库中? 解决办法一:将10亿个号码存入数据库中,进行数据库查询,准确性有了,但是速度会比较慢. 解决办法二:将10亿号码放入内存中,比如Redis缓存中,这里我们算一下占用内存大小:10亿*8字节=8GB,通过内存查询,准确性和速度都有了,但是大约8gb的内存空间,挺浪费内存空间的.2.接触过爬虫的,应该有这么一个需求,需要爬虫的网站千千万万,对于一个新的网站ur…
1.布隆过滤器 内容参考:https://www.jianshu.com/p/2104d11ee0a2 1.数据结构 布隆过滤器是一个BIT数组,本质上是一个数据,所以可以根据下标快速找数据 2.哈希映射 1.布隆需要记录见过的数据,这里的记录需要通过hash函数对数据进行hash操作,得到数组下标并存储在BIT 数组里记为1.这样的记录一个数据只占用1BIT空间 2.判断是否存在时:给布隆过滤器一个数据,进行hash得到下标,从BIT数组里取数据如果是1 则说明数据存在,如果是0 说明不存在…
欢迎关注微信公众号:万猫学社,每周一分享Java技术干货. 什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西存在时,这种东西可能不存在:当布隆过滤器说,某种东西不存在时,那么这种东西一定不存在. 布隆过滤器相对于Set.Map 等数据结构来说,它可以更高效地插入和查询,并且占用空间更少,它也有缺点,就是判断某种东西是否存在时,可能会被误判.但是只…
大家都知道,在计算机中,IO一直是一个瓶颈,很多框架以及技术甚至硬件都是为了降低IO操作而生,今天聊一聊过滤器,先说一个场景: 我们业务后端涉及数据库,当请求消息查询某些信息时,可能先检查缓存中是否有相关信息,有的话返回,如果没有的话可能就要去数据库里面查询,这时候有一个问题,如果很多请求是在请求数据库根本不存在的数据,那么数据库就要频繁响应这种不必要的IO查询,如果再多一些,数据库大多数IO都在响应这种毫无意义的请求操作,那么如何将这些请求阻挡在外呢?过滤器由此诞生: 布隆过滤器 布隆过滤器(…
什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西存在时,这种东西可能不存在:当布隆过滤器说,某种东西不存在时,那么这种东西一定不存在. 布隆过滤器相对于Set.Map 等数据结构来说,它可以更高效地插入和查询,并且占用空间更少,它也有缺点,就是判断某种东西是否存在时,可能会被误判.但是只要参数设置的合理,它的精确度也可以控制的相对精确,只会有小小…
通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下问题就是另外一种考虑方式了, 因此本文只描述贫穷落后一穷二白的场景,俨然有种60年代先辈们在戈壁攻克原子弹的感觉. 1.查找问题的一般思路 查找问题是出现频率极高的问题,来看一道面试题: 给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件所有共同的U…
通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下问题就是另外一种考虑方式了,因此本文只描述贫穷落后一穷二白的场景,俨然有种60年代先辈们在戈壁攻克原子弹的感觉. 1.查找问题的一般思路 查找问题是出现频率极高的问题,来看一道面试题: 给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件所有共同的UR…
原文:巧用redis位图存储亿级数据与访问 - 简书 业务背景 现有一个业务需求,需要从一批很大的用户活跃数据(2亿+)中判断用户是否是活跃用户.由于此数据是基于用户的各种行为日志清洗才能得到,数据部门不能提供实时接口,只能提供包含用户及是否活跃的指定格式的文本由业务方使用. 存在的挑战 海量数据如何尽可能用小的空间存储 如何能快速获取指定的数据 如何能快速的写入到目标存储 解决思路 由于我的业务中只需要根据某个用户id查询是否是活跃用户,不存在复杂的查询条件,所以用redis很合适. 如此大的…
本篇博客我们主要介绍如何用Redis实现布隆过滤器,但是在介绍布隆过滤器之前,我们首先介绍一下,为啥要使用布隆过滤器. 1.布隆过滤器使用场景 比如有如下几个需求: ①.原本有10亿个号码,现在又来了10万个号码,要快速准确判断这10万个号码是否在10亿个号码库中? 解决办法一:将10亿个号码存入数据库中,进行数据库查询,准确性有了,但是速度会比较慢. 解决办法二:将10亿号码放入内存中,比如Redis缓存中,这里我们算一下占用内存大小:10亿*8字节=8GB,通过内存查询,准确性和速度都有了,…
Redis中的HyperLogLog 一般我们评估一个网站的访问量,有几个主要的参数: pv,Page View,网页的浏览量 uv,User View,访问的用户 一般来说,pv 或者 uv 的统计,可以自己来做,也可以借助一些第三方的工具,比如 cnzz,友盟 等. 如果自己实现,pv 比较简单,可以直接通过 Redis 计数器就能实现.但是 uv 就不一样,uv 涉及到另外一个问题,去重. 我们首先需要在前端给每一个用户生成一个唯一 id,无论是登录用户还是未登录用户,都要有一个唯一 id…