在 CUDA C/C++ kernel中使用内存 如何在主机和设备之间高效地移动数据.本文将讨论如何有效地从内核中访问设备存储器,特别是 全局内存 . 在 CUDA 设备上有几种内存,每种内存的作用域.生存期和缓存行为都不同.到目前为止,已经使用了驻留在设备 DRAM 中的 全局内存 ,用于主机和设备之间的传输,以及内核的数据输入和输出.这里的名称 global 是指作用域,因为它可以从主机和设备访问和修改.全局内存可以像下面代码片段的第一行那样使用 __device__ de Clara 说明…
第一章 1.2 CUDA支持C与C++两种编程语言,该书中的实例采取的是Thrust数据并行API,.cu作为CUDA源代码文件,其中编译器为ncvv. 1.3 CUDA提供多种API: 数据并行C++ Thrust API 可用于C或者C++的Runtime API 可用于C或者C++的Driver API 以上API自高层向低层.Thrust API 具有较高可读性.可维护性,并且提供了很多方法(如归约),但它与硬件相隔离,从而无法发挥硬件的全部功能:CUDA Runtime 使得C语言…
原文链接 第五节:了解和使用共享内存(2) Rob Farber 是西北太平洋国家实验室(Pacific Northwest National Laboratory)的高级科研人员.他在多个国家级的实验室进行大型并行运算的研究,并且是几个新创企业的合伙人.大家可以发邮件到rmfarber@gmail.com与他沟通和交流. 在CUDA系列文章的第四节里,我探讨了执行模型和内核启动执行配置是如何影响寄存器的数量和本地多处理器资源如共享内存的数量的.在本小节,我会继续探讨内存性能,和在reverse…
了解和使用共享内存(1) Rob Farber 是西北太平洋国家实验室(Pacific Northwest National Laboratory)的高级科研人员.他在多个国家级的实验室进行大型并行运算的研究,并且是几个新创企业的合伙人.大家可以发邮件到rmfarber@gmail.com与他沟通和交流. CUDA(Compute Unified DeviceArchitecture,即计算统一设备架构的简称)开发人员面临的一个最重要的性能挑战就是:最佳利用本地多处理器内存资源如共享内存,常量内…