自然语言处理--Word2vec(二)】的更多相关文章

前一篇,word2vec(一)主要讲了word2vec一些表层概念,以及主要介绍CBOW方法来求解词向量模型,这里主要讲论文 Distributed Representations of Words and Phrases and their Compositionality中的skip-gram model方法,这可以被视作为一种概率式方法. 前面有一篇讲过自然语言处理的词频处理方法即TF-IDF,这种方法往往只是可以找出一篇文章中比较关键的词语,即找出一些主题词汇.但无法给出词汇的语义,比如…
一.自然语言处理与深度学习 自然语言处理应用 深度学习模型                       为什么需要用深度学习来处理呢 二.语言模型 1.语言模型实例: 机器翻译 拼写纠错                                                                     智能问答   1)机器翻译,比如要翻译高价,可能 P(high price) > P(large price),然后得到的结果就是high price 2)拼写纠错,比如 fi…
在前面讲nltk安装的时候,我们下载了很多的文本.总共有9个文本.那么如何找到这些文本呢: text1: Moby Dick by Herman Melville 1851 text2: Sense and Sensibility by Jane Austen 1811 text3: The Book of Genesis text4: Inaugural Address Corpus text5: Chat Corpus text6: Monty Python and the Holy Gra…
一, 获取文本语料库 一个文本语料库是一大段文本.它通常包含多个单独的文本,但为了处理方便,我们把他们头尾连接起来当做一个文本对待. 1. 古腾堡语料库 nltk包含古腾堡项目(Project Gutenberg)电子文本档案的一小部分文本.要使用该语料库通常需要用Python解释器加载nltk包,然后尝试nltk.corpus.gutenberg.fileids().实例如下: >>> import nltk >>> nltk.corpus.gutenberg.fil…
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 首先按照词频顺序为每个词汇分配一个编号,然后将词汇表保存到一个独立的vocab文件中. #!/usr/bin/env python # -*- coding: UTF-8 -*- # coding=utf-8 """ @author: Li Tian @contact: 694317828@qq.com @software: pycharm @file: word_deal1.py @tim…
一.基本概念 word2vec是Google在2013年开源的一个工具,核心思想是将词表征映 射为对应的实数向量. 目前采用的模型有一下两种 CBOW(Continuous Bag-Of-Words,即连续的词袋模型) Skip-Gram 项目链接:https://code.google.com/archive/p/word2vec 二.背景知识 词向量 词向量就是用来将语言中的词进行数学化的一种方式,顾名思义,词向量 就是把一个词表示成一个向量.这样做的初衷就是机器只认识0 1 符号,换句话说…
再谈word2vec 标签: word2vec自然语言处理NLP深度学习语言模型 2014-05-28 17:17 16937人阅读 评论(7) 收藏 举报  分类: Felven在职场(86)    目录(?)[+]   之前写过一篇博文介绍如何使用word2vec,最近老板让我讲一讲word2vec,显然光讲word2vec的使用是不够的,更重要的是介绍原理.这篇文章就写写自己对于word2vec的一些理解吧.   背景介绍 Word2vec是google在2013年开源的一款将词表征为实数…
Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 目录 Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 0x00 摘要 0x01 背景概念 1.1 词向量基础 1.1.1 独热编码 1.1.2 分布式表示 1.2 CBOW & Skip-Gram 1.2.1 CBOW 1.2.2 Skip-gram 1.3 Word2vec 1.3.1 Word2vec基本思想 1.3.2 Hierarchical Softmax基本思路 1.3.3 Hierarchi…
1.单词的向量化表示 一般来讲,词向量主要有两种形式,分别是稀疏向量和密集向量. 所谓稀疏向量,又称为one-hot representation,就是用一个很长的向量来表示一个词,向量的长度为词典的大小N,向量的分量只有一个1,其他全为0,1的位置对应该词在词典中的索引. 至于密集向量,又称distributed representation,即分布式表示.最早由Hinton提出,可以克服one-hot representation的上述缺点,基本思路是通过训练将每个词映射成一个固定长度的短向…
一. 原理 哈弗曼树推导: https://www.cnblogs.com/peghoty/p/3857839.html 负采样推导: http://www.hankcs.com/nlp/word2vec.html https://github.com/kmkolasinski/deep-learning-notes/blob/master/seminars/2017-01-Word2Vec/slides.pdf https://blog.csdn.net/u014595019/article/…