MR案例:Reduce-Join】的更多相关文章

问题描述:两种类型输入文件:address(地址)和company(公司)进行一对多的关联查询,得到地址名(例如:Beijing)与公司名(例如:Beijing JD.Beijing Red Star)的关联信息.可参考MR案例:Map-Join 1.map阶段:对比之前的单表关联可知,reduce阶段的key必须为关联两表的key,即address.Id = company.Id.则两表经过map处理输出的key必须是Id. Class Map<LongWritable, Text, Long…
MapReduce Join 对两份数据data1和data2进行关键词连接是一个很通用的问题,如果数据量比较小,可以在内存中完成连接. 如果数据量比较大,在内存进行连接操会发生OOM.mapreduce join可以用来解决大数据的连接. 1 思路 1.1 reduce join 在map阶段, 把关键字作为key输出,并在value中标记出数据是来自data1还是data2.因为在shuffle阶段已经自然按key分组,reduce阶段,判断每一个value是来自data1还是data2,在…
1.map阶段:将单词和URI组成Key值(如“MapReduce :1.txt”),将词频作为value. 利用MR框架自带的Map端排序,将同一文档的相同单词的词频组成列表,传递给Combine过程,实现类似于WordCount的功能. Class Map<Longwritable, Text, Text, Longwritable>{ method map(){ //获取输入分片对应的文件名 String fileName=((FileSplit)context.getInputSpli…
在关系型数据库中 Join 是非常常见的操作,各种优化手段已经到了极致.在海量数据的环境下,不可避免的也会碰到这种类型的需求, 例如在数据分析时需要连接从不同的数据源中获取到数据.不同于传统的单机模式,在分布式存储下采用 MapReduce 编程模型,也有相应的处理措施和优化方法. 我们先简要地描述待解决的问题.假设有两个数据集:气象站数据库和天气记录数据库,并考虑如何合二为一.一个典型的查询是:输出气象站的历史信息,同时各行记录也包含气象站的元数据信息. 一.Reduce Join 在Reud…
HDFS被设计来存储大文件,而有时候会有大量的小文件生成,造成NameNode资源的浪费,同时也影响MapReduce的处理效率.有哪些方案可以合并这些小文件,或者提高处理小文件的效率呢? 1). 所有HDFS小文件数据导出到本地单个文件后,再存入HDFS [root@ncst ~]# hadoop fs -ls /test/in/small/ Found items -rw-r--r-- root supergroup -- : /test/ -rw-r--r-- root supergrou…
一 介绍 Reduce Join其主要思想如下: 在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签(tag), 比如:tag=0表示来自文件File1,tag=2表示来自文件File2.即:map阶段的主要任务是对不同文件中的数据打标签.在reduce阶段,reduce函数获取key相同的来自File1和File2文件的value list, 然后对于同一个key,对File1和File2中的数据进行join(笛卡尔…
CombineFileInputFormat是一个抽象类.Hadoop提供了两个实现类CombineTextInputFormat和CombineSequenceFileInputFormat. 此案例让我明白了三点:详见 解读:MR多路径输入 和 解读:CombineFileInputFormat类 对于单一输入路径情况: //指定输入格式CombineFileInputFormat job.setInputFormatClass(CombineTextInputFormat.class);…
本案例采用 MultipleInputs类 实现多路径输入的倒排索引.解读:MR多路径输入 package test0820; import java.io.IOException; import java.lang.reflect.Method; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; impo…
SequenceFile文件是Hadoop用来存储二进制形式的key-value对而设计的一种平面文件(Flat File).在SequenceFile文件中,每一个key-value对被看做是一条记录(Record),基于Record的压缩策略,SequenceFile文件支持三种压缩类型: NONE: 对records不进行压缩; (组合1) RECORD: 仅压缩每一个record中的value值(不包括key); (组合2) BLOCK: 将一个block中的所有records(包括ke…
[外连接]是在[内连接]的基础上稍微修改即可.具体HQL语句详见Hive查询Join package join.map; import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Lon…