转自– Warald (Email: iamxiaoning@gmail.com) 博客: http://www.1point3acres.com,微博:http://www.weibo.com/warald 开头:如果你极其讨厌编程.大学数学勉强合格,或者跟人交流能力巨挫,那这篇文章可能不适合你看,你也可以自动叉掉其他关于data science/scientist的文章.Warald会花一周时间集中介绍一下这门科学,用具体的例子谈一下数据科学家到底做哪些工作.读什么专业.需要什么样的技能,欢…
iOS 7 之后苹果给 UIViewController 引入了 topLayoutGuide 和 bottomLayoutGuide 两个属性来描述不希望被透明的状态栏或者导航栏遮挡的最高位置(status bar, navigation bar, toolbar, tab bar 等).这个属性的值是一个 length 属性( topLayoutGuide.length). 这个值可能由当前的 ViewController 或者 NavigationController 或者 TabbarC…
Python拥有着极其丰富且稳定的数据科学工具环境.遗憾的是,对不了解的人来说这个环境犹如丛林一般(cue snake joke).在这篇文章中,我会一步一步指导你怎么进入这个PyData丛林. 你可能会问,很多现有的PyData包推荐列表怎么样?我觉得对新手来说提供太多的选择可能会受不了.因此这里不会提供推荐列表,我要讨论的范围很窄,只集中于10%的工具,但它们可以完成你90%的工作.当你掌握这些必要的工具后,你就可以浏览PyData工具的长列表了,选择自己接下来要使用的. 值得一提的是,我介…
http://python.jobbole.com/80853/ Python拥有着极其丰富且稳定的数据科学工具环境.遗憾的是,对不了解的人来说这个环境犹如丛林一般(cue snake joke).在这篇文章中,我会一步一步指导你怎么进入这个PyData丛林. 你可能会问,很多现有的PyData包推荐列表怎么样?我觉得对新手来说提供太多的选择可能会受不了.因此这里不会提供推荐列表,我要讨论的范围很 窄,只集中于10%的工具,但它们可以完成你90%的工作.当你掌握这些必要的工具后,你就可以浏览Py…
做Data Mining,其实大部分时间都花在清洗数据 时间 2016-12-12 18:45:50  51CTO 原文  http://bigdata.51cto.com/art/201612/524771.htm 主题 数据挖掘 前言:很多初学的朋友对大数据挖掘第一直观的印象,都只是业务模型,以及组成模型背后的各种算法原理.往往忽视了整个业务场景建模过程中,看似最普通,却又最精髓的特征数据清洗.可谓是平平无奇,却又一掌定乾坤,稍有闪失,足以功亏一篑. 大数据圈里的一位扫地僧 说明:这篇文章很…
写在前面 9.28接收了拟录取通知,也终究是尘埃落定了,我人生的又一个阶段也终于结束.面对最终录取结果,或多或少会有所遗憾,但也还是基本达到了预期的目标了. 作为在今年严峻的保研形势下幸存的我,一直想着把这段经历记录下来,一方面是满足自己,更多的是为了本学院有志于保研的学弟学妹们,亦或是同样来自双非计算机专业的同学,希望我的经历能够带给你们帮助,让你们少走些弯路,成功上岸理想中的大学- 觉得有用的话大家可以点个赞或者收藏支持我一下hhhh 0. 保研黑话 以下是一些需要提前了解的保研黑话: 术语…
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比和解释.那我根据以前读的书和论文,还有和与导师之间的交流,尝试着说一说这几者的区别吧,毕竟一个好的定义在未来的学习和交流中能够发挥很大的作用.同时补上数据科学和商业分析之间的关系.能力有限,如有疏漏,请包涵和指正. 导论…
原文地址如下: https://www.kaggle.com/startupsci/titanic-data-science-solutions ---------------------------------------------------------------- 泰坦尼克数据科学解决方案: 1. 工作流程步骤: 在 Data Science Solutions book 这本书里,描述了在解决一个竞赛问题时所需要做的具体工作流程: 问题的定义 获取训练数据以及测试数据 加工.准备以及…
一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文章中我们只介绍了如何利用urllib.requests这样的请求库来将我们的程序模拟成一个请求网络服务的一端,来直接取得设置好的url地址中朴素的网页内容,再利用BeautifulSoup或pyspider这样的解析库来对获取的网页内容进行解析,在初级篇中我们也只了解到如何爬取静态网页,那是网络爬虫…
文本文件是基本的文件类型,不管是csv, xls, json, 还是xml等等都可以按照文本文件的形式读取. #-*- coding: utf-8 -*- fpath = "data/textfile.txt" f = open(fpath, 'r') ## 按照字符读取字符 first_char = f.read(1) print "first char: ", first_char ## 改变文件对象的位置, 位置是按照bytesize计算的 ## 如果不把位置…
敏捷数据科学:用Hadoop创建数据分析应用(数据分析最佳实践入门敏捷大数据首作分步骤|全流程演示思路.工具与方法) [美]Russell Jurney(拉塞尔·朱尔尼) 著   冯文中 朱洪波 译 ISBN 978-7-121-23619-8 2014年7月出版 定价:49.00元 184页 16开 编辑推荐 对大数据的挖掘需要投入大量的人力和时间.怎么才能确保构建的是一个正确的模型?通过这本实践指南,你可以学到一套灵活的工具和方法论,在Hadoop上构建数据分析应用. 使用诸如Python.…
很多牛逼的公司都宣称在建立数据科学部门,这个部门该如何组建,大家都在摸石头过河. O‘reilly Strata今年 六月份发布了报告 <Analyzing the Analyzers>,比较清晰的阐述了数据科学部门所需要的不同角色及其技能.重点内容翻译如下: 数据科学家的分类研究方法 自我认识 请被调查者用常用的5级标准(从完全同意到完全不同意)来回答 “我觉得自己是一个XX” 这样的问题,能够获得数据科学家的自我认识结果.调查结果将数据科学家分为以下四类:Data Businesspeop…
https://www.leiphone.com/news/201703/iZGuGfnER4Sv2zRe.html 2017年Gartner数据科学平台(在2016年被称作“高级分析平台”)的魔力象限报告于近期出炉了.今年的报告对16个数据分析公司进行了15个标准的评估,并基于前瞻性(Completeness of Vision)和执行能力(Ability of Execute),将他们按评分放置在四个象限中(魔力象限的横坐标表示的是前瞻性,纵坐标表示的则是执行能力). 尽管像Python和R…
文章提纲 全书总评 C01.Python 介绍 Python 版本 Python 解释器 Python 之禅 C02.Python 基础知识 基础知识 流程控制: 函数及异常 函数: 异常 字符串 获取键盘输入: 字符串处理 字符串操作 正则表达式 C05. 容器(Container)与集合(Collections) 元组(Tuple) 列表(List) 字典(Dictionary) 集合(Collections) C06.Python 标准库 数学模块:math 时间模块:time,datet…
原文链接:Data Science For Banking & Insurance 如果不能正常访问,请点击备份获取. 在银行和保险行业应用数据科学 互联网巨头和金融技术创业时代的求生和发展 介绍 在数个世纪的进程中,银行和保险行业开发出的程序.产品和基础设施,塑造了整个人类的经济史. 但是现在,他们正面临着消亡的威胁,而挑战者们出现在世界舞台上只是几十年的事,甚至其中几个就出现在短短几年前.尽管如此,却正是这些后来者正在重新制定金融服务的行业规则.这些挑战者包括像 Google.亚马逊.Fac…
Jupyter Notebooks 是数据科学/机器学习社区内一款非常流行的工具.Jupyter Notebooks 允许数据科学家创建和共享他们的文档,从代码到全面的报告都可以.李笑来 相当于拿他来学编程和写文档(书)之前只是看到机器人项目写python的同事在服务器部署了anaconda3 搜索anaconda3时,有看到过jupyter这种名字 搞python可科学相关 要很多做代码画图工具的 感觉用处多些个人写代码不大确定 看李笑来的书 看其写文档的功能很全.类似python编程入门 李…
Python是门很神奇的语言,历经时间和实践检验,受到开发者和数据科学家一致好评,目前已经是全世界发展最好的编程语言之一.简单易用,完整而庞大的第三方库生态圈,使得Python成为编程小白和高级工程师的首选. 在本文中,我们会分享不同于市面上的python数据科学库(如numpy.padnas.scikit-learn.matplotlib等),尽管这些库很棒,但是其他还有一些不为人知,但同样优秀的库需要我们去探索去学习. 1. Wget 从网络上获取数据被认为是数据科学家的必备基本技能,而Wg…
注:很早之前就打算专门写一篇与Python数据可视化相关的博客,对一些基本概念和常用技巧做一个小结.今天终于有时间来完成这个计划了! 0. Python中常用的可视化工具 Python在数据科学中的地位,不仅仅是因为numpy, scipy, pandas, scikit-learn这些高效易用.接口统一的科学计算包,其强大的数据可视化工具也是重要组成部分.在Python中,使用的最多的数据可视化工具是matplotlib,除此之外还有很多其他可选的可视化工具包,主要包括以下几大类: matpl…
Python是一种神奇的语言.事实上,它是近几年世界上发展最快的编程语言之一,它一次又一次证明了它在开发工作和数据科学立场各行业的实用性.整个Python系统和库是对于世界各地的用户(无论是初学者或者高级)都是一个恰当的选择.其成功和受欢迎的原因之一是它强大的库,这些库使其具有动态性和快速性. 在本文中,我们将看到一些除了常用的像pandas.scikit-learn. matplotlib之外的数据科学任务的Python库.虽然一看见像pandas,scikit-learn这些库就让人脑子浮现…
我用了两天左右的时间完成了这一门课<Introduction to Python for Data Science>的学习,之前对Python有一些基础,所以在语言层面还是比较顺利的,这门课程的最大收获是让我看到了在数据科学中Python的真正威力(也理解了为什么Python这么流行),同时本次课程的交互式练习体验(Datacamp)非常棒.     这门课程主要包括了6个单元的内容,一开始介绍了Python的基本概念(常见数据类型和变量),从第二节开始讲解列表在Python中的使用,并且逐步…
数据科学是一个范围很广的学科.机器学习和统计学都是数据科学的一部分.机器学习中的学习一词表示算法依赖于一些数据(被用作训练集)来调整模型或算法的参数.这包含了许多的技术,比如回归.朴素贝叶斯或监督聚类.但不是所有的技术都适合机器学习.例如有一种统计和数据科学技术就不适合——无监督聚类,该技术是在没有任何先验知识或训练集的情况下检测 cluster 和 cluster 结构,从而帮助分类算法.这种情况需要人来标记 cluster.一些技术是混合的,比如半监督分类.一些模式检测或密度评估技术适合机器…
最近一则<Facebook隐私泄露事件继续发酵,黑客明码标价出售聊天信息>的新闻被爆出,一个用户的信息被标价10美分.让人不禁感慨,3万亿市值的facebook,用户数据竟然如此便宜. 在这个“数字时代”,我们在科技面前渐渐变成了“透明人”,隐私有时候显得有些弥足珍贵.曾经有人反驳,你免费使用产品,公司获得数据,这是一个公平的交易.显然,反对者还没有理解保护隐私为何那么重要.今天,就来谈谈:用户产生的数据,到底应该归谁? 我们一般的理解,数据应该是归平台的.比如,你在电子商务平台(如亚马逊)上…
除了 pandas.scikit-learn 和 matplotlib,还要学习一些用 Python 进行数据科学的新技巧. Python 是一种令人惊叹的语言.事实上,它是世界上增长最快的编程语言之一.它一次又一次地证明了它在各个行业的开发者和数据科学者中的作用.Python 及其库的整个生态系统使其成为全世界用户的恰当选择,无论是初学者还是高级用户.它成功和受欢迎的原因之一是它的一组强大的库,使它如此动态和快速. 在本文中,我们将看到 Python 库中的一些数据科学工具,而不是那些常用的工…
数据科学内容广泛,涉及到统计分析.机器学习以及计算机科学三方面的知识和技能.学习数据科学,推荐学习<精通数据科学从线性回归到深度学习>. 针对技术书籍,最好的阅读方法是对照每一章的示例代码,动手实现所讨论的模型.这样会极大加深自己对模型的理解和实践能力,否则就会像读小说一样,阅读时感觉不错,但实际使用时就无从下手了.配套代码则兼容Python 3和Windows系统. 学习参考: <精通数据科学从线性回归到深度学习>PDF,432页,带书签目录,文字可以复制.配套源代码.作者:唐亘…
一.简介 R中的ggplot2是一个非常强大灵活的数据可视化包,熟悉其绘图规则后便可以自由地生成各种可视化图像,但其默认的色彩和样式在很多时候难免有些过于朴素,本文将要介绍的ggthemr包专门针对原生ggplot2图像进行美化,掌握它之后你就可以创作出更具特色和美感的数据可视化作品. 二.基础内容 2.1 安装 不同于常规的R包,ggthemr并没有在CRAN上发布,因此我们需要使用devtools中的install_github()直接从github上安装它,参照github上ggthemr…
一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集实战 2.1 数据要求 这次我们需要采集的数据是知名旅游网站马蜂窝下重庆区域内所有景点的用户评论数据,如下图所示: 思路是,先获取所有景点的poi ID,即每一个景点主页url地址中的唯一数字: 这一步和(数据科学学习手札33)基于Python的网络数据采集实战(1)中做法类似,即在下述界面: 翻页…
一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完成任务,若你对RNN及LSTM不甚了解,请移步上一篇数据科学学习手札39; 二.数据说明及预处理 2.1 数据说明 我们本文使用到的第一个数据来自R中自带的数据集AirPassengers,这个数据集记录了Box & Jenkins航空公司1949-1960年共144个观测值(对应每个月的国际航线乘…
2017年排名前15的数据科学python库 2017-05-22 Python程序员 Python程序员 Python程序员 微信号 pythonbuluo 功能介绍 最专业的Python社区,有每日推送,免费电子书,真人辅导,资源下载,各类工具.我已委托“维权骑士”(rightknights.com)为我的文章进行维权行动 Python部落(python.freelycode.com)组织翻译,禁止转载,欢迎转发. 最近几年,python在数据科学领域展现出极大的生命力.在这里,我们根据实践…
一.简介 我们在前面的数据科学学习手札34中也介绍过,作为最典型的神经网络,多层感知机(MLP)结构简单且规则,并且在隐层设计的足够完善时,可以拟合任意连续函数,而除了利用前面介绍的sklearn.neural_network中的MLP来实现多层感知机之外,利用tensorflow来实现MLP更加形象,使得使用者对要搭建的神经网络的结构有一个更加清醒的认识,本文就将对tensorflow搭建MLP模型的方法进行一个简单的介绍,并实现MNIST数据集的分类任务: 二.MNIST分类 作为数据挖掘工…
一.简介 关于正则表达式,我在前一篇(数据科学学习手札31)中已经做了详细介绍,本篇将对Python中自带模块re的常用功能进行总结: re作为Python中专为正则表达式相关功能做出支持的模块,提供了一系列方法来完成几乎全部类型的文本信息的处理工作,下面一一介绍: 二.re.compile() 在前一篇文章中我们使用过这个方法,它通过编译正则表达式参数,来返回一个目标对象的匹配模式,进而提高了正则表达式的效率,主要参数如下: pattern:输入的欲编译正则表达式,需将正则表达式包裹在''内传…