SPOJ - HIGH :Highways (生成树计数)】的更多相关文章

传送门 输入格式: 第一行一个整数T,表示测试数据的个数 每个测试数据第一行给出 n,m 分别表示点数与边数 接下来 m 行,每行给出两个数 a,b ,表示 a,b 之间有一条无向边 输出格式: 每个测试数据,输出一个整数,表示给出的无向图的生成树的个数 输入输出样例 输入样例#1: 4 4 5 3 4 4 2 2 3 1 2 1 3 2 1 2 1 1 0 3 3 1 2 2 3 3 1 输出样例#1: 8 1 1 3 辗转相除 code: //By Menteur_Hxy #include<…
Highways 题目链接:https://vjudge.net/problem/SPOJ-HIGH Description: In some countries building highways takes a lot of time... Maybe that's because there are many possiblities to construct a network of highways and engineers can't make up their minds whi…
题目链接:https://vjudge.net/problem/SPOJ-HIGH 解法: 生成树计数 1.构造 基尔霍夫矩阵(又叫拉普拉斯矩阵) n阶矩阵 若u.v之间有边相连 C[u][v]=C[v][u]=-1 矩阵对角线为点的度数 2.求n-1阶主子式 的行列式的绝对值 去掉第一行第一列 初等变换消成上三角矩阵 对角线乘积为行列式 #include <bits/stdc++.h> using namespace std; const double eps = 1e-8; const i…
In some countries building highways takes a lot of time... Maybe that's because there are many possiblities to construct a network of highways and engineers can't make up their minds which one to choose. Suppose we have a list of cities that can be c…
https://blog.csdn.net/zhaoruixiang1111/article/details/79185927 为了学一个矩阵树定理 从行列式开始学(就当提前学线代了.. 论文生成树的计数及其应用 矩阵数定理: 截图来自于上述论文 裸题. #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> using namespace std; ; ; double…
题目链接:http://www.spoj.pl/problems/HIGH/ 题意:求最小生成树个数. #include<algorithm> #include<cstdio> #include<cmath> #include<cstring> #include<iostream> #define ll long long ][]; int n,m; ; int zero(double x){ ; else return x>eps; }…
spoj 104 Highways 生成树计数,matrix-tree定理的应用. Matrix-tree定理: D为无向图G的度数矩阵(D[i][i]是i的度数,其他的为0),A为G的邻接矩阵(若u,v之间存在边,A[u][v]=A[v][u]=1),C=D-A. 对于一个无向图G,它的生成树个数等于其Kirchhoff矩阵任何一个n-1阶主子式的行列式的绝对值. 所谓n-1阶主子式,就是对于任意一个r,将C的第r行和第r列同表示时删去后的新矩阵,表示为Cr. 求行列式的值: 把矩阵用高斯消元…
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只有一条路径. \(Solution\) 生成树计数 直接上Matrix Tree 无解情况别忘了判 MatrixTree定理大体见这吧,证明别的应用什么的先不管了. 基尔霍夫矩阵=度数矩阵-边矩阵. #include <cmath> #include <cstdio> #include…
第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一个环,如果还要维护处树的特点 那么就要在这个环上删去一条边,这样他还是树,删掉的边显然是这条链上权值最大边更可能形成次小生成树.那么就有2中方法可以做. 第一种PRIM在prim时候直接可以做出这个从I到J的链上权值最大的值MAX[i][j]; 同时可以用kruskal同样方式标记树边,然后DFS跑…
一直都知道要用Matrix-Tree定理来解决生成树计数问题,但是拖到今天才来学.博主数学不好也只能跟着各位大佬博客学一下它的应用以及会做题,证明实在是不会. 推荐博客: https://www.cnblogs.com/zj75211/p/8039443.html (Matrix-Tree定理) https://blog.csdn.net/u011815404/article/details/99679527(无向图生成树/MST计数) https://www.cnblogs.com/yangs…