DeepSeek模型量化】的更多相关文章

tensorflow模型量化/DATA/share/DeepLearning/code/tensorflow/bazel-bin/tensorflow/tools/graph_transforms/transform_graph \--in_graph=./model_resnet100.pb \--out_graph=/tmp/model_resnet100_quantized_graph.pb \--inputs=input0 \--outputs=fcblock/fc1/add_1 \--…
模型量化 什么是量化 模型的weights数据一般是float32的,量化即将他们转换为int8的.当然其实量化有很多种,主流是int8/fp16量化,其他的还有比如 二进制神经网络:在运行时具有二进制权重和激活的神经网络,以及在训练时计算参数的梯度. 三元权重网络:权重约束为+1,0和-1的神经网络 XNOR网络:过滤器和卷积层的输入是二进制的. XNOR 网络主要使用二进制运算来近似卷积. 现在很多框架或者工具比如nvidia的TensorRT,xilinx的DNNDK,TensorFlow…
1,概述 模型量化应该是现在最容易实现的模型压缩技术,而且也基本上是在移动端部署的模型的毕竟之路.模型量化基本可以分为两种:post training quantizated和quantization aware training.在pyrotch和tensroflow中都提供了相应的实现接口. 对于量化用现在常见的min-max方式可以用公式概括为: $r = S (q - Z)$ 上面式子中q为量化后的值,r为原始浮点值,S为浮点类型的缩放系数,Z为和q相同类型的表示r中0点的值.根据: $…
CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数都用诸如int8和float16低精度数据类型表示.降低的数据带宽减少了推理时间和存储器/存储要求,以及功耗.在适当的量化方案下,可以最小化量化模型的精度下降.因此,量化模型特别适合研究人员和开发人员,使大型模型适合在各种设备(例如GPU,CPU和移动设备)上部署. 通常通过手工微内核,针对不同的工…
deeplearning模型量化实战 MegEngine 提供从训练到部署完整的量化支持,包括量化感知训练以及训练后量化,凭借"训练推理一体"的特性,MegEngine更能保证量化之后的模型与部署之后的效果一致.本文将简要介绍神经网络量化的原理,并与大家分享MegEngine量化方面的设计思路与实操教程. 背景 近年来随着边缘计算和物联网的兴起与发展,许多移动终端(比如手机)成为了深度学习应用的承载平台,甚至出现了各式各样专用的神经网络计算芯片.由于这些设备往往对计算资源和能耗有较大限…
在深度学习中,量化指的是使用更少的bit来存储原本以浮点数存储的tensor,以及使用更少的bit来完成原本以浮点数完成的计算.这么做的好处主要有如下几点: 更少的模型体积,接近4倍的减少: 可以更快的计算,由于更少的内存访问和更快的int8计算,可以快2~4倍. 一个量化后的模型,其部分或者全部的tensor操作会使用int类型来计算,而不是使用量化之前的float类型.当然,量化还需要底层硬件支持,x86 CPU(支持AVX2).ARM CPU.Google TPU.Nvidia Volta…
本文基本参考自这篇文章:8-Bit Quantization and TensorFlow Lite: Speeding up mobile inference with low precision 首先来一段keras dalao Francois Chollet的鸡汤: make it possible make it work make it efficient make it dependable and invisible move on to next layer and think…
参考 https://blog.csdn.net/xygl2009/article/details/80596392 https://blog.csdn.net/xsfl1234/article/details/67669707 https://www.jianshu.com/p/d2637646cda1 1 安装bazel https://docs.bazel.build/versions/master/install-ubuntu.html#install-with-installer-ub…
模型优化工具包是一套先进的技术工具包,可协助新手和高级开发者优化待部署和执行的机器学习模型.自推出该工具包以来,  我们一直努力降低机器学习模型量化的复杂性 (https://www.tensorflow.org/lite/performance/post_training_quantization). 最初,我们通过"混合运算"为训练后量化提供支持,该方法可量化模型参数(例如权重),但以浮点方式执行部分计算.今天,我们很高兴宣布推出一款新工具:训练后整型量化.整型量化是一种通用技术,…
本文旨在将迁移学习训练好的模型基于tensorflow工具进行量化. 环境配置及迁移学习部分可参考博文[https://www.cnblogs.com/hayley111/p/12887853.html]. 首先使用如下workflow理解模型部署的过程,本文主要描述的是quant这一步. 1. 环境准备: 安装bazel bazel是一个开源的构造和测试工具,在EIQ中指定用tf配套版本的bazel进行构建.参照如下官方指导链接 [https://docs.bazel.build/versio…