openEuler欧拉部署Harbor】的更多相关文章

目       录 1.      概述... 3 2.      创建虚拟机&安装华为欧拉(openEuler)系统... 4 2.1           创建新的虚拟机... 4 2.2           默认选择Wowrkstation 16.x. 5 2.3           选择稍后安装操作系统... 6 2.4           选择其他Liunx 4.x 64位... 7 2.5           设置虚拟机进行命名... 7 2.6           配置虚拟机的处理器…
感觉是机器翻译,好多地方不通顺,凑合看看 原文名称:Complex-YOLO: An Euler-Region-Proposal for  Real-time 3D Object Detection on Point Clouds原文地址:http://www.sohu.com/a/285118205_715754代码位置:https://github.com/Mandylove1993/complex-yolo(值得复现一下) 摘要.基于激光雷达的三维目标检测是自动驾驶的必然选择,因为它直接关…
集群时间同步 我们在之前的kubeasz部署高可用kubernetes1.17.2 并实现traefik2.1.2部署篇已经实现了基于chrony的时间同步 [root@bs-k8s-master01 ~]# cat /etc/chrony.conf # Use public servers from the pool.ntp.org project. server 20.0.0.202 iburst [root@bs-k8s-master01 ~]# chronyc sources -v Nu…
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知识点:   欧拉函数.http://www.cnblogs.com/shentr/p/5317442.html 题解一: 当M==1时,显然答案为N. 当M!=1.  X是N的因子的倍数是 gcd(X,N)>1 && X<=N 的充要条件.so  先把N素因子分解, N=     …
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 uva上做过gcd(x,y)=1的题 gcd(x,y)=p ---> gcd(x/p,y/p)=1 每个质数做一遍行了 答案是欧拉函数的前缀和*2…
欧拉法的来源 在数学和计算机科学中,欧拉方法(Euler method)命名自它的发明者莱昂哈德·欧拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解.它是一种解决常微分方程数值积分的最基本的一类显型方法(Explicit method). [编辑] 什么是欧拉法 欧拉法是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法.——流场法 它不直接追究质点的运动过程,而是以充满运动液体质点的空间——流场为对象.研究各时刻质点在流场中的变化规律.将个别流体质点运动过…
题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k)) f(0,k) = balabalabalabala 所以,实际上的f(n,k)是这么个东西 f(0,(0,(0,(0,(0,(0,(0,(0,k)))))))) 直接递归求解并打出表来,我们可以发现这样的事实 f(0,k) = k+1 所以有f(n,k) = n + k + 1; 所以题目就转…
Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler(int n) { int ans=n; for(int i=0;i<cnt&&prime[i]<=n;i++) { if(n%prime[i]==0) { ans=ans-ans/prime[i]; while(n%prime[i]==0) n/=prime[i]; } } if(…
51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136 1136 欧拉函数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题   对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi(8) = 4),因为1,3,5,7均和8互质.  …