因果推断-Caual Inference】的更多相关文章

biobank 英国的基金数据因果推断和不同的研究互相论证,而非一个研究得到的接了就行.数据融合,data fusion,同一个因果问题不同数据不同结论,以及历史上的数据,来共同得到更稳健.更高效的推断.敏感性分析(评价假定的方法).多方验证.统计中的meta analysis荟萃分析.讨论这个做法背后的模型.假定是如何解释这个结果.敏感性分析(评价假定的方法).1.实现你的方法,论证你的方法:2.论证你的模型.假定,以及解释你的结果.三者缺一不可.单单的方法是不行的.大规模数据处理面对比较高维…
(学习这部分内容大约需要花费1.1小时) 摘要 在我们感兴趣的大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这两者的框架. 变分推断把推断看作优化问题: 我们尝试根据某种距离度量来寻找一个与真实后验尽可能接近的分布(或者类似分布的表示) 预备知识 学习变分推断需要以下预备知识 多元分布: 边际化(Marginalization)是我们使用变分推断时最常使用的操作 KL散度: KL散度是变分目标函数的一部分.…
1. 建模 对原始信号 X 进行观测,观测可以抽象为(离散:PY|X(y|x), 连续:fY|X(y|x)),物理世界噪声的存在,将导致观测到的 X 出现一定的噪声,记为 Y: X⇒fY|X(y|x)⇒Y 对于推断(inference)问题而言,我们更多的是考虑如何从 Y 获取原始的无噪信号 X: Y⇒fX|Y(y|x)⇒X 注意,原始信号 X 离散的,并不意味着其观测值也是离散的: {X=0,1Y=X+W 而 W 是高斯噪声.这种由离散信号因为高斯噪声(连续概率分布)的存在而最终得到连续的观察…
Direct and Indirect Effects Author: Judea Pearl UAI 2001 加州大学洛杉矶分校 论文链接:https://dl.acm.org/doi/pdf/10.5555/2074022.2074073 本文链接:https://www.cnblogs.com/zihaojun/p/15715903.html 目录 Direct and Indirect Effects 前言 1. Introduction 2. 概念性分析 2.1 直接效应 VS. 总…
1.变分推断(Variational Inference) 1.1.分解概率分布(Factorized distributions) 1.2.分解近似的性质(Properties of factorized approximations) 1.3.例子:一元高斯分布(Example: The univariate Gaussian) 1.4.模型比较(Model comparition) 2.例子:高斯的变分混合(Illustration Variational Mixture of Gauss…
上二年级的大儿子一直在喝无乳糖牛奶,最近让他尝试喝正常牛奶,看看反应如何.三天过后,儿子说,好像没反应,我可不可以说我不对乳糖敏感了. 我说,呃,这个问题不简单啊.你知道吗,这在统计学上叫推断. 儿子很好学,居然叫我解释什么叫推断.   好吧,那我就来卖弄一下.   老早之前,听机器学习的一个podcast,是总结前一年机器学习领域发生什么事情,最后一段P主说: 我们已经总结了这一年,那我们来预测(predict)一下明年吧,不过我觉得说predict不是那么准确,应该是做一下inference…
推断(Inference),就是深度学习把从训练中学习到的能力应用到工作中去. 精心调整权值之后的神经网络基本上就是个笨重.巨大的数据库.为了充分利用训练的结果,完成现实社会的任务,我们需要的是一个能够保留学习到的能力,还能迅速应用到前所未见的数据上的,响应迅速的系统.这就是推断,根据真实世界中的少量数据,迅速地提供正确的答案. 这可是计算机科学的全新领域.现在主要有两种方法来优化庞大笨拙的神经网络,以实现高速低延迟的应用. 第一个方法,是查找神经网络中经过训练后并没有用到.也就是说尚未激活的部…
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有章节focus on这里. 可能这些内容有些“反人类正常逻辑”,故让更多的菜鸡选择了放弃. <MLaPP> 参考<MLaPP>的内容,让我们打开坑,瞧一瞧. 20.2 Belief propagation for treesIn this section, we generalize…
[统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causation 的区别 现实中遇到的很多问题实际上是因果问题,而不是预测. 因果问题分为两种:一种是 causal inference,比如给定两个变量 X.Y,希望找到一个衡量它们之间因果关系的参数 theta:另一种是 causal discovery,即给定一组变量,找到他们之间的因果关系.对于后面…
Click can be Cheating: Counterfactual Recommendation for Mitigating Clickbait Issue Authors: 王文杰,冯福利,何向南,张含望,蔡达成 SIGIR'21 新加坡国立大学,中国科学技术大学,南洋理工大学 论文链接:https://dl.acm.org/doi/pdf/10.1145/3404835.3462962 本文链接:https://www.cnblogs.com/zihaojun/p/15713705…