传送门 对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\) 那么分别讨论 如果这个元素自己单独一个集合,那么方案数为\(S(n-1,k-1)\)(这个\(S\)是第二类斯特林树),也就是讨论其它的\(n-1\)个怎么放,每一种方案的贡献都是\(1\),所以这一部分的贡献就是\(S(n-1,k-1)\) 如果这个元素和其它元素一起放在一个集合里,那么剩下\(n-1\)个元素放的方案数为\(…