Hive优化(整理版)】的更多相关文章

1. 概述 1.1 hive的特征: 可以通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析: 它可以使已经存储的数据结构化: 可以直接访问存储在Apache HDFS或其他数据存储系统(如Apache HBase)中的文件: Hive除了支持MapReduce计算引擎,还支持Spark和Tez这两种分布式计算引擎: 它提供类似sql的查询语句HiveQL对数据进行分析处理: 数据的存储格式有多种,比如数据源是二进制格式,普通文本格式等等: 1.2…
Flink 核心技术浅析(整理版) https://www.cnblogs.com/swordfall/p/10612404.html 分类: Flink undefined 1. Flink简介 Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink流执行引擎(streaming dataflow engine),提供支持流处理和批处理两种类型应用的功能.batch dataSet可以视作data Streaming的一种特例.基于流执行引擎…
/* 标题:一个项目涉及到的50个Sql语句(整理版) 说明:以下五十个语句都按照测试数据进行过测试,最好每次只单独运行一个语句. */ --1.学生表Student(S,Sname,Sage,Ssex) --S 学生编号,Sname 学生姓名,Sage 出生年月,Ssex 学生性别 --2.课程表 Course(C,Cname,T) --C --课程编号,Cname 课程名称,T 教师编号--3.教师表 Teacher(T,Tname) --T 教师编号,Tname 教师姓名 --4.成绩表…
第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩编码8.2.2 压缩参数配置8.3 开启Map输出阶段压缩8.4 开启Reduce输出阶段压缩8.5 文件存储格式8.5.1 列式存储和行式存储8.5.2 TextFile格式8.5.3 Orc格式8.5.4 Parquet格式8.5.5 主流文件存储格式对比实验8.6 存储和压缩结合8.6.1 修…
系统来自系统妈:http://www.xitongma.com 电脑公司最新GHOST win7系统32位优化精简版V2016年3月 系统概述 电脑公司ghost win7 x86(32位)万能装机版集成的软件符合电脑公司及电脑城装机绝大多数人要求及喜好,既大众,又时尚,人人喜欢,处处适用.自动判断笔记本电脑或台式电脑键盘类型,并自动开启台式键盘数字指示灯,笔记本键盘则为关闭状态.结合作者的实际工作经验,融合了许多实用的功能.安装维护方便快速 - 集成常见硬件驱动,智能识别+预解压技术,绝大多数…
今日给合作公司讲解本公司网站SEO优化整理的一份简单文档 架构 ########################################## 1.尽量避免Javascript和flash导航. 虽然JS和FLASH能把网站做的绚丽漂亮,但目前搜索引擎还是无法顺利的抓取其中的内容,所以我们要避免. 2.目录层次不能太深. 网站目录尽量保持在三层以内,尽可能接近根网址,比如“www.xxx.com/产品目录/产品名称”明显比“www.xxx.com/产品目录/年份/月份/产品名称”要好. 3…
要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1.不怕数据多,就怕数据倾斜. 2.对jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,没半小时是跑不完的.map reduce作业初始化的时间是比较长的. 3.对sum,count来说,不存在数据倾斜问题. 4.对count(distinct )…
一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例:a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数…
1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总并优化,使数据倾斜不成问题. count(distinct),在数据量大的情况下,效率较低,如果是多count(distinct)效率更低,因为count(distinc…
SQL优化 MySQL版  - -B树索引详讲 作者:Stanley 罗昊 [转载请注明出处和署名,谢谢!] 为什么要进行SQL优化呢?很显然,当我们去写sql语句时: 1会发现性能低 2.执行时间太长, 3.或等待时间太长 4.sql语句欠佳,以及我们索引失效 5.服务器参数设置不合理 SQL语句执行过程分析 1.编写过程: 编写过程就是我们平常写sql语句的过程,也可以理解为编写顺序,以下就是我们编写顺序: select from join on where 条件 group by 分组 h…