nyoj 84阶乘后0的个数】的更多相关文章

描述 计算n!的十进制表示最后有多少个0 输入 第一行输入一个整数N表示测试数据的组数(1<=N<=100)每组测试数据占一行,都只有一个整数M(0<=M<=10000000) 输出 输出M的阶乘的十进制表示中最后0的个数比如5!=120则最后的0的个数为1 样例输入 6 3 60 100 1024 23456 8735373 分析: http://www.cnblogs.com/hansongjiang/archive/2014/05/06.html 0来源于2*5,且将N!中分…
点击打开链接 阶乘的0 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 计算n!的十进制表示最后有多少个0 输入 第一行输入一个整数N表示测试数据的组数(1<=N<=100) 每组测试数据占一行,都只有一个整数M(0<=M<=10000000) 输出 输出M的阶乘的十进制表示中最后0的个数 比如5!=120则最后的0的个数为1 样例输入 6 3 60 100 1024 23456 8735373 样例输出 0 14 24 253 5861 218383…
求阶乘末尾0的个数 (1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0. (2)求N!的二进制表示中最低位为1的位置. 第一题 考虑哪些数相乘能得到10,N!= K * 10M其中K不能被10整除,则N!末尾有M个0. 对N!进行质因数分解: N!=2X*3Y*5Z…,因为10=2*5,所以M与2和5的个数即X.Z有关.每一对2和5都可以得到10,故M=min(X,Z).因为能被2整除的数出现的频率要比能被5整除的数出现的频率高,所以M…
问题一解法:     我们知道求N的阶乘结果末尾0的个数也就是说我们在从1做到N的乘法的时候里面产生了多少个10, 我们可以这样分解,也就是将从0到N的数分解成因式,再将这些因式相乘,那么里面有多少个10呢? 其实我们只要算里面有多少个5就可以了?     因为在这些分解后的因子中,能产生10的可只有5和2相乘了,由于2的个数是大于5的个数的,因此 我们只要算5的个数就可以了.那么这个题目就是算这些从1到N的数字分解成因子后,这些因子里面 5的个数.   Python代码 def factori…
题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 分析 Note中提示让用对数的时间复杂度求解,那么如果粗暴的算出N的阶乘然后看末尾0的个数是不可能的. 所以仔细分析,N! = 1 * 2 * 3 * ... * N 而末尾0的个数只与这些乘数中5和2的个数有关,因为每出现一对5和2就会产生…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1138 题意:给你一个数n,然后找个一个最小的数x,使得x!的末尾有n个0:如果没有输出impossible 可以用二分求结果,重点是求一个数的阶乘中末尾含有0的个数,一定和因子5和2的个数有关,因子为2的明显比5多,所以我们只需要求一个数的阶乘的因子中一共有多少个5即可; LL Find(LL x) { LL ans = ; while(x) { ans += x/; x /= ;…
Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explanation: 3! = 6, no trailing zero. Example 2: Input: 5 Output: 1 Explanation: 5! = 120, one trailing zero. 考虑n!的质数因子.后缀0总是由质因子2和质因子5相乘得来的.如果我们可以计数2和5的个数…
给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数随后的s行, 每行有两个整数n,m. 假设m=5,n=26;26!中5的个数为多少呢?只有5的倍数中含有5 1. 5 10 15 20 25 共5个(26/5) 2.这个时候,我们认为有些数中有多个5,比如25,将上述数全部除以5, 1 2 3 4 5  存在一个5(5/5) 所以共6个. 简单来说就是 sum=0…
所有的0都是有2和45相乘得'到的,而在1-n中,2的个数是比5多的,所以找5的个数就行 但是不要忘了25中包含两个5,125中包含3个5,以此类推 所以在找完1-n中先找5,再找25,再找125....直到n/5商为0 return n==0?0:n/5+trailingZeroes(n/5);…
class Solution {public: int trailingZeroes(int n) {            if(n<=0) return 0; int i=0;           int res=0; while(n){ res+=n/5; n=n/5; } return res;}}; 很神奇的,eg  125 125=25*5,相当于前前面有1,2,3,4,5,……,20,21,22,23,24,25  * 5 125/5 = 25 相当于前面变成0,0,0,0,1,……