特征检测之Haar】的更多相关文章

Harr特征, 主要用于人脸检测,可以参考我的博文 基于MATLAB的adaboost级联形式的人脸检测实现 1 harr特征的原理 2 haar特征的计算 3 haar特征的应用…
注意:opencv-2.4.10 #include "stdio.h"#include "string.h"#include "iostream" #include "opencv/cv.h"#include "opencv/cxcore.h"#include "opencv/highgui.h"#include "opencv/ml.h"#include "…
#include <opencv2/opencv.hpp> #include <cstdio> #include <cstdlib> #include <iostream> #include <Windows.h> using namespace std; int main() { // 加载Haar特征检测分类器 // haarcascade_frontalface_alt.xml系OpenCV自带的分类器 下面是我机器上的文件路径 const…
使用机器学习的方法进行人脸检测的第一步需要训练人脸分类器,这是一个耗时耗力的过程,需要收集大量的正负样本,并且样本质量的好坏对结果影响巨大,如果样本没有处理好,再优秀的机器学习分类算法都是零. 今年3月23日,微软公司在推特(Twitter)社交平台上推出了一个基于机器学习的智能聊天机器人Tay,Tay被设定为一个年龄为十几岁的女孩,主要目标受众是18岁至24岁的青少年.人们只需要@一下Tay,Tay就会追踪该用户的网名.性别.喜欢的食物.邮编.感情状况等个人信息.除了聊天,Tay还可以说笑话,…
这种以Boxfilter替代integral image 的方法很难使用到haar.LBP等特征检测中,因为像下面说的,它不支持多尺度,也就是说所提取的特征必须是同一个大小,最起码同一个宽高比的,这一点对宽高不定的haar特征.LBP特征都有很大的限制,但对于HOG特征因为尺度不像另外两个那样灵活,还是有迹可循的.采长补短 申明:以下非笔者原创,原文转载自:http://www.cnblogs.com/easymind223/archive/2012/11/13/2768680.html 这个项…
Haar特征介绍(Haar Like Features) 高类间变异性 低类内变异性 局部强度差 不同尺度 计算效率高 这些所谓的特征不就是一堆堆带条纹的矩形么,到底是干什么用的?我这样给出解释,将上面的任意一个矩形放到人脸区域上,然后,将白色区域的像素和减去黑色区域的像素和,得到的值我们暂且称之为人脸特征值,如果你把这个矩形放到一个非人脸区域,那么计算出的特征值应该和人脸特征值是不一样的,而且越不一样越好,所以这些方块的目的就是把人脸特征量化,以区分人脸和非人脸. 为了增加区分度,可…
SERF(speed up robust feature )特征的关键特性: 特征检测 尺度空间:缩放到不同的大小或分辨率仍能检测 选择不变性:光照不变,旋转不变 特征向量:描述为一个特征向量 DDN过程为:检测.描述.匹配 工作原理: 选择感兴趣的区域POI,用Hessian矩阵找到,然后求取梯度 在不同尺度空间发现关键点,非最大信号压制,把不是局部的最大信号放弃 发现特征点,求取在某个方向上的特征最大值就找到了特征方向.旋转不变性 再根据光照不变性生成特征向量 Hessian矩阵:$\lef…
我们要探讨的Haar分类器实际上是Boosting算法(提升算法)的一个应用,Haar分类器用到了Boosting算法中的AdaBoost算法,只是把AdaBoost算法训练出的强分类器进行了级联,并且在底层的特征提取中采用了高效率的矩形特征和积分图方法,这里涉及到的几个名词接下来会具体讨论. 在2001年,Viola和Jones两位大牛发表了经典的<Rapid Object Detection using a Boosted Cascade of Simple Features>和<R…
Modernizr:一个HTML5特征检测库 Modernizr帮助我们检测浏览器是否实现了某个特征,如果实现了那么开发人员就可以充分利用这个特征做一些工作 Modernizr是自动运行的,无须调用诸如modernizr_init()之类的初始化方法 Modernizr的官网地址http://modernizr.com/ 在官网首页你就可以下载modernizr.js(它分两个版本Development和Production版本.其实它们都会导向同一个下载页面,只不过前者会帮我们把选项预先勾上而…
step 1: 把正样品,负样品,opencv_createsamples,opencv_haartraining放到一个文件夹下面,利于后面的运行.step 2: 生成正负样品的描述文件 正样品描述文件find positive_boosted -iname "*.bmp" -exec echo \{\} 1 0 0 20 20 \; > face.info生成positive_boosted/face00244.bmp 1 0 0 20 20positive_boosted/…