ARC150D - Removing Gacha (树上期望)】的更多相关文章

写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT 后来做了 HDU 4035 终于会了.... 感谢 雕哥的帮助 !!! 题意 #2542. 「PKUWC 2018」随机游走 题解 原本的模型好像我不会那个暴力dp .... 就是直接统计点集中最后经过的点的期望 , 也就是点集中到所有点步数最大值的期望 . (也许可以列方程高斯消元 ? 似乎没分)…
搞了一下午 真的是啥都不会 首先这道题要用到Min-Max容斥 得到的结论是 设 $Max(S)$表示集合里最晚被访问的节点被访问的期望步数 设 $Min(S)$表示集合里最早被访问的节点被访问的期望步数 那么$ Max(S) = ∑_{T \in S} {-1^ { \lvert T \rvert+1} }Min(T)$ (这个相关的证明和理解可以看看HDU4336 附一个题解) 考虑对于一个集合$S$如何计算$Min(S)$ 记$d_u$为点$u$的度数 当$u\notin S \space…
题目:https://loj.ac/problem/2542 因为走到所有点的期望就是所有点期望的最大值,所以先最值反演一下,问题变成从根走到一个点集任意一点就停止的期望值: 设 \( f[x] \),则 \( f[x] = \frac{f[fa]+1+\sum\limits_{v \in son} (f[v]+1)}{d[x]} \),其中 \( d[x] \) 是 \( x \) 的度数: 因为其实只和 \( fa \) 有关,所以套路是设 \( f[x] = K[x] * f[fa] +…
哇我太菜啦555555 不妨钦定我们需要访问的点集为$S$,在$S$已知的情况下,我们令$f(x) $表示从$x$走到点集$S$中任意一点的期望步数. 若$x∈S$,则显然$f(x)=0$,否则$f[x]=\frac{1}{d[x]}\sum f[ch[x]]+1$.其中$d[x]$表示与$x$相连的节点个数,$ch[x]$为与$x$相连的节点. 然后就列出了$n$条式子,显然是一个$n$元一次方程,可以考虑用高斯消元去求解,这样时间复杂度是$O(n^32^{n})$,只能拿$60$分(然而我考…
参考:https://blog.csdn.net/shiyukun1998/article/details/44684947 先看对于树的情况 设d[u]为点u向儿子走的期望长度和,du[u]为u点的度数,f[u]为u向儿子走的期望长度,只需要dfs两遍,一次求向儿子的d[u]+=f[e[i].to]+e[i].va;,第二次求向父亲走的情况d[e[i].to]+=(d[u]-e[i].va-f[e[i].to])/max(1,du[u]-1)+e[i].va;(u表示向父亲走之后能再向父亲的非…
比赛标号从大到小排列 . 因为博主比较菜所以没有题解的题都是博主不会做的 /youl ARC144 以前的比赛懒得写了 . 目录 AtCoder Regular Contest 152 B. Pass on Path C. Pivot D. Halftree AtCoder Regular Contest 151 A. Equal Hamming Distances B. A < AP C. 01 Game D. Binary Representations and Queries E. Kee…
PkuWc 2018 酱油记 1. Day -INF 又停了一个月课...... 感觉这个月的收获还是蛮大的,刚来的时候还只会线段树,到现在LCT都学了... 这个月不停在考试,自己考试技巧也提升了不少... 然而这并没有什么用,自己还是太弱啦,只能继续努力. 2. Day -1 考试前一天下午,下定决心颓一把... 因为NOIP考得太差了,连正式营员都不是,所以异常的没有什么压力. 晚上看了一晚上小说,把东西准备了一下,就去考试. 3. Day 1 Morning 开营仪式瞎BB了半天,混混就…
题目描述 给定一棵 n 个结点的树,你从点 x 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 Q 次询问,每次询问给定一个集合 S,求如果从 x 出发一直随机游走,直到点集 S 中所有点都至少经过一次的话,期望游走几步. 特别地,点 x(即起点)视为一开始就被经过了一次. 答案对 998244353 取模. 输入格式 第一行三个正整数 n,Q,x. 接下来 n-1 行,每行两个正整数 (u,v) 描述一条树边. 接下来 Q 行,每行第一个数 k 表示集合大小,接下来 k 个互不相同的…
字符串: 1.广义后缀自动机(大小为\(m\))上跑一个长度为\(n\)的串,所有匹配位置及在\(parent\)树上其祖先的数量的和为\(min(n^2,m)\),单次最劣是\(O(m)\). 但是如果跑多个串,总长为\(n\),可以证明所有串长相等的时候复杂度更劣,设有\(k\)个串,那么复杂度为:\(O(k(n/k)^2)\),这个时候\(k=\frac{n}{\sqrt{m}}\)最劣,是\(O(n\sqrt{m})\) 2.反串\(parent\)树就是压缩节点后缀树. 3.后缀树可以…
传送门 那么除了D1T3,PKUWC2018就更完了(斗地主这种全场0分的题怎么会做啊) 发现我们要求的是所有点中到达时间的最大值的期望,\(n\)又很小,考虑min-max容斥 那么我们要求从\(x\)走到第一个属于某个子集\(S\)的节点的步数期望,这是一个经典的树上高斯消元问题. 将树设为以\(x\)为根,设\(f_{i , S}\)为从第\(i\)个点随机游走到达点集\(S\)任意一个点停止,行走步数的期望,转移: \(1.i \in S: f_{i , S}=0\) \(2.i \no…