论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入固定尺寸大小的图片(224x224),这引入了大量的手工因素,同时,一定程度上,对于任意尺寸的图片或者子图会降低识别的准确率.SPP-net对于任意大小的图片,可以生成固定长度的特征表述.SPP-net对于变形的图片仍有一定的鲁棒性.基于上述优点,SPP-net会提高基于CNN的图像分类的效果. S…
论文链接:https://blog.csdn.net/qq_34889607/article/details/8053642 摘要 该文重新窥探空洞卷积的神秘,在语义分割领域,空洞卷积是调整卷积核感受野和DCNN feature map分辨率的有力工具.该文应用不同sample rate的空洞卷积以级联或者平行的方式来处理分割任务中的多尺寸问题.另外,增强了ASPP使其在图像级编码global context来生成卷积特征.该文与DeepLabv1,DeepLabv2不同,将作为后处理的CRF移…
13 A Data-Driven Graph Generative Model for Temporal Interaction Networks link:https://scholar.google.com.sg/scholar_url?url=https://par.nsf.gov/servlets/purl/10272483&hl=zh-TW&sa=X&ei=HCmOYrzrJ8nFywSFg47QCw&scisig=AAGBfm08x5PFAPPWh_nl6CoU…
论文源址:https://arxiv.org/abs/1611.06612 tensorflow代码:https://github.com/eragonruan/refinenet-image-segmentation 摘要 RefineNet是一种生成式的多路径增强网络,在进行高分辨率的预测时,借助远距离的残差连接,尽可能多的利用下采样过程中的所有信息.这样,通过前期卷积操作得到的细粒度特征可以增强能够获得图像更高层次信息更深的网络.RefineNet的组件基于残差连接,可以进行端到端的训练.…
论文概况 Multi-Perspective Sentence Similarity Modeling with Convolution Neural Networks是处理比较两个句子相似度的问题, 适用于解决智能客服问题匹配场景中用户提交的问句与知识库中问句的匹配. 文章将整个问题的解决分成两部分: 对句子进行建模, 将句子转换为某种向量表示. 这部分使用CNN完成 两个句子相似度衡量的方式. 这里是新颖的地方. 然后将衡量计算得到的相似度向量投入到Dense层中, 再根据目标接Output…
分类的数据大小:1.2million 张,包括1000个类别. 网络结构:60million个参数,650,000个神经元.网络由5层卷积层,其中由最大值池化层和三个1000输出的(与图片的类别数相同)全链接层组成. 选用非饱和神经元和高性能的GPU来增强卷积操作.为防止在全链接层发生过拟合,我们进行规则化 'dropout'操作,效果明显. 1.说明: 通过改变卷积神经网络的深度和宽度可以控制网络自身的容量.卷积网络可以更准确的预测图片的本质(图像统计上的不变性和像素级的局部性). 相比具有相…
Introduction 该文章首次采用深度学习方法来解决基于视频的行人重识别,创新点:提出了一个新的循环神经网络架构(recurrent DNN architecture),通过使用Siamese网络(孪生神经网络),并结合了递归与外貌数据的时间池,来学习每个行人视频序列的特征表示. Method (1)特征提取架构: 第一层:卷积神经网络,提取每个行人的外貌特征向量: 第二层:循环神经网络,让网络更好的提取时空信息: 第三层:时间池,让网络将不同长度的视频序列总结为一个特征向量. Siame…
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失缺乏对label信息的考虑(???). (2)Contribution: 提出一个新的端到端网络框架,称为 CNN and RNN Fusion(CRF),结合了Siamese.Softmax 联合损失函数.分别对全身和身体局部进行模型训练,获得更有区分度的特征表示. Method (1)框架: (…
论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① Positive Re-Weighting: 其中 若太大,则选择的样本标签的可信度小:若太小,则样本数量不足以进行矩阵学习,因此设置如下的: 其中,σ为 [0, 1],如果 σ = 1,则说明充分相信样本估计的可信度,反之设置为 σ = 0. ② Negative Re-Weighting: 对于所…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoop集群,支持更灵活的编程模型 == 核心思想 == 固定的编程模型,单点的资源调度和任务管理方式,使得Hadoop 1…