目录 关于\(LCP\)有如下两个公式: \(LCP~Lemma\) 的证明: \(LCP~Theorem\) 的证明: 关于\(LCP\)有如下两个公式: \(LCP~Lemma:\) 对任意 \(1\le i<j<k\le n\) ,存在 \(LCP(i,k)=min\{LCP(i,j),LCP(j,k)\}\) 成立. \(LCP~Theorem:\) 对任意 \(i<j\),存在 \(LCP(i,j)=^{~~~~~min}_{i+1 \le k \le j}\{LCP(k-1,…
题目链接 题意:给定长度为n(n <= 1000)的只含小写字母的字符串,问字符串子串不重叠出现最少两次的不同子串个数; input: aaaa ababcabb aaaaaa # output 2 3 3   思路:套用后缀数组求解出sa数组和height数组,之后枚举后缀的公共前缀长度i,由于不能重叠,所以计数的是相邻height不满足LCP >= i的. 写写对后缀数组倍增算法的理解: 1.如果要sa数组对应的值也是1~n就需要在最后加上一个最小的且不出现的字符'#',里面y[]是利用s…
题意: 输入n个序列,求出一个最大长度的字符串,使得它在超过一半的DNA序列中连续出现.如果有多解,按照字典序从小到大输出所有解. 分析:这道题的关键是将多个字符串连接成一个串,方法是用不同的分隔符把所有原串拼接起来.接下来,就可以求这个新串的后缀数组和 height 数组, 然后二分答案,没次只需判断是非有一个长度为p的串在超过一半的串中出现过,判断方法是扫描一遍height数组,把它分成若干段,每当height[i] < p时,开辟一个新段,然后判断之前段是否包含了超过 n/2个原串后缀,那…
近日整理书稿,在整理至Strling公式处时,发现当时数学老师所讲的是形式比较精细的一种: Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}},\)其中\(\theta_n\in\left(\dfrac{n}{n+1},1\right)\)是一个与\(n\)有关的变量. 这相当于是利用Euler-Maclaurin求和公式所能得到的最精确形式的Strli…
------------恢复内容开始------------ 据新闻报道数学天才陶哲轩和3个物理学家研究出一个只用特征值就可以计算矩阵特征向量的公式, 我感觉很有趣, 这应该能够应用在很多领域中, 所以仔细研究了一波.研究公式耗费了我大半天, 我把所有的equation都推导了一遍, 也给出了一些我的看法, 现在把它们总结出来, 方便后人参考. 我给出了Cauchy-Binet公式(原文引理1)的更广义形式及其怎么过程, 对该公式取特殊条件即可证明引理2.(该引理就是全文的主要结论). 不过相比…
上期(RSA简介及基础数论知识)为大家介绍了:互质.欧拉函数.欧拉定理.模反元素 这四个数论的知识点,而这四个知识点是理解RSA加密算法的基石,忘了的同学可以快速的回顾一遍. 一.目前常见加密算法简介 二.RSA算法介绍及数论知识介绍 三.RSA加解密过程及公式论证 三.RSA加解密过程及公式论证 今天的内容主要分为三个部分: rsa密钥生成过程: 讲解如何生成公钥和私钥 rsa加解密演示: 演示加密解密的过程 rsa公式论证:解密公式的证明 1.rsa密钥生成过程 大家都知道rsa加密算法是一…
题目描述 小敏和小燕是一对好朋友. 他们正在玩一种神奇的游戏,叫Minecraft. 他们现在要做一个由方块构成的长条工艺品.但是方块现在是乱的,而且由于机器的要求,他们只能做到把这个工艺品最左边的方块放到最右边. 他们想,在仅这一个操作下,最漂亮的工艺品能多漂亮. 两个工艺品美观的比较方法是,从头开始比较,如果第i个位置上方块不一样那么谁的瑕疵度小,那么谁就更漂亮,如果一样那么继续比较第i+1个方块.如果全都一样,那么这两个工艺品就一样漂亮. 输入 第一行两个整数n,代表方块的数目. 第二行n…
原论文(俄文)地址:suffix_automata 原翻译(中文)地址:后缀自动机详解(DZYO的博客) Upd:强推浅显易懂(?)的SAM讲解 后缀自动机 后缀自动机(单词的有向无环图)--是一种强有力的数据结构,让你能够解决许多字符串问题. 例如,使用后缀自动机可以在某一字符串中搜索另一字符串的所有出现位置,或者计算不同子串的个数--这都能在线性 时间内解决. 直觉上,后缀自动机可以被理解为所有子串的简明信息.一个重要的事实是,后缀自动机以压缩后的形式包含了一个长度 为n的字符串的所有信息,…
在学了一天其实是边学边摆之后我终于大概$get$后缀自动机了,,,就很感动,于是时隔多年我终于决定再写篇学习笔记辽$QwQ$ $umm$和$FFT$学习笔记一样,这是一篇单纯的$gql$的知识总结博,对新手并不友好,想学$SAM$的话我是推荐几篇博客:1 2 3(没有$hihocoder$主要我$jio$得有点太理论化了,全是文字没有图其实我挺难看下去的然后也没那么形象比较难理解$kk$ 然后因为我对纯文字的抽象知识点理解起来比较垃圾,,,所以全文可能会放比较多的图$QwQ$ 先放个已经建好的$…
这是我很早以前在高中时发现的一个通用计算K次方和数列公式的方法,很特别的地方是用了微积分中的积分方法.目前我还没有发现有谁提出和我一样的方法,如果哪位读者有相关发现,麻烦告知我. 大家很多人都知道高斯小时候的故事.故事说的是大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」高斯的计算方法是:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=50…