论文提出使用进化算法来进行神经网络结构搜索,整体搜索逻辑十分简单,结合权重继承,搜索速度很快,从实验结果来看,搜索的网络准确率挺不错的.由于论文是个比较早期的想法,所以可以有很大的改进空间,后面的很大算法也是基于这种想法进行更好的补充   来源:晓飞的算法工程笔记 公众号 论文: Large-Scale Evolution of Image Classifiers 论文地址:https://arxiv.org/abs/1703.01041 Introduction   论文对当前的进化算法进行少…
为了优化进化算法在神经网络结构搜索时候选网络训练过长的问题,参考ENAS和NSGA-III,论文提出连续进化结构搜索方法(continuous evolution architecture search, CARS),最大化利用学习到的知识,如上一轮进化的结构和参数.首先构造用于参数共享的超网,从超网中产生子网,然后使用None-dominated排序策略来选择不同大小的优秀网络,整体耗时仅需要0.5 GPU day   来源:晓飞的算法工程笔记 公众号 论文: CARS: Continuous…
论文提出经济实惠且高效的神经网络结构搜索算法EAS,使用RL agent作为meta-controller,学习通过网络变换进行结构空间探索.从指定的网络开始,通过function-preserving transformation不断重用其权重,EAS能够重用之前学习到的知识进行高效地探索新的结构,仅需要10 GPU days即可   来源:晓飞的算法工程笔记 公众号 论文: Efficient Architecture Search by Network Transformation 论文地…
论文提出NASH方法来进行神经网络结构搜索,核心思想与之前的EAS方法类似,使用网络态射来生成一系列效果一致且继承权重的复杂子网,本文的网络态射更丰富,而且仅需要简单的爬山算法辅助就可以完成搜索,耗时0.5GPU day   来源:晓飞的算法工程笔记 公众号 论文: Simple And Efficient Architecture Search for Convolutional Neural Networks 论文地址:https://arxiv.org/pdf/1711.04528.pdf…
NAS(神经结构搜索)综述 文章转载自:http://www.tensorinfinity.com/paper_136.html 本文是对神经结构搜索(NAS)的简单综述,在写作的过程中参考了文献[1]列出的部分文献.深度学习技术发展日新月异,市面的书很难跟上时代的步伐,本人希望写出一本内容经典.新颖的机器学习教材,此文是对<机器学习与应用>,清华大学出版社,雷明著一书的补充.该书目前已经重印了3次,收到了不少读者的反馈,对于之前已经发现的笔误和印刷错误,在刚印刷出的这一版中已经做了校正,我会…
差分进化算法 (Differential Evolution)   Differential Evolution(DE)是由Storn等人于1995年提出的,和其它演化算法一样,DE是一种模拟生物进化的随机模型,通过反复迭代,使得那些适应环境的个体被保存了下来.但相比于进化算法,DE保留了基于种群的全局搜索策略,采用实数编码.基于差分的简单变异操作和一对一的竞争生存策略,降低了遗传操作的复杂性.同时,DE特有的记忆能力使其可以动态跟踪当前的搜索情况,以调整其搜索策略,具有较强的全局收敛能力和鲁棒…
标准差分进化算法matlab程序实现 自适应差分演化算法方面的Matlab和C++代码及论文 差分进化算法 DE-Differential Evolution matlab练习程序(差异演化DE) [DE算法]差分进化算法原理及matlab代码 差分进化算法 CEC2017 benchmark function调用接口 王勇:http://ist.csu.edu.cn/YongWang.htm   http://www.escience.cn/people/yongwang1/index.htm…
进化算法,也被成为是演化算法(evolutionary algorithms,简称EAs),它不是一个具体的算法,而是一个“算法簇”.进化算法的产生的灵感借鉴了大自然中生物的进化操作,它一般包括基因编码,种群初始化,交叉变异算子,经营保留机制等基本操作.与传统的基于微积分的方法和穷举方法等优化算法(具体介绍见博客[Math] 常见的几种最优化方法中的其他数学优化方法)相比,进化计算是一种成熟的具有高鲁棒性和广泛适用性的全局优化方法,具有自组织.自适应.自学习的特性,能够不受问题性质的限制,有效地…
Geatpy The Genetic and Evolutionary Algorithm Toolbox for Python Introduction Website (including documentation): http://www.geatpy.com Tutorial pdf: https://github.com/geatpy-dev/geatpy/tree/master/geatpy/doc/Geatpy-tutorials   (推荐看!) Demo : https://…
https://blog.csdn.net/qq_33353186/article/details/82014986 Geatpy是一个高性能的Python遗传算法库以及开放式进化算法框架,由华南理工大学.华南农业大学.德州奥斯汀公立大学学生联合团队开发. Website (including documentation): http://www.geatpy.com Contact us: https://www.geatpy.com/supportsSource: https://githu…
目录 前言 概述 启发式的理解(重点) 优化问题的定义 个体编码 初始族群的创建 评价 配种选择 锦标赛 轮盘赌选择 随机普遍抽样选择 变异 单点交叉 两点交叉 均匀交叉 部分匹配交叉 突变 高斯突变 乱序突变 位翻转突变 均匀整数突变 环境选择 完全重插入(Pure reinsertion) 均匀重插入(Uniform reinsertion) 精英重插入(Elitist reinsertion) 精英保留重插入(Fitness-based reinsertion) 进化算法的python实现…
引言 差分进化算法是基于群体智能理论的优化算法,是通过群体内个体间的合作与竞争而产生的智能优化搜索算法,它保留了基于种群的全局搜索策略,采用实数编码.基于差分的简单变异操作和"一对一"的竞争生存策略,降低了进化计算操作的复杂性. 差分进化算法的原理 差分进化算法是一种自组织最小化方法,利用种群中两个随机选择的不同向量来干扰现有向量,种群中的每一个向量都要进行干扰. 它通过把种群中的两个成员之间的加权差向量加到第三个成员上来产生新的参数向量,该操作成为"变异". 将变…
Logistic回归.传统多层神经网络 1.1 线性回归.线性神经网络.Logistic/Softmax回归 线性回归是用于数据拟合的常规手段,其任务是优化目标函数:$h(\theta )=\theta+\theta_{1}x_{1}+\theta_{2}x_{2}+....\theta_{n}x_{n}$ 线性回归的求解法通常为两种: ①解优化多元一次方程(矩阵)的传统方法,在数值分析里通常被称作”最小二乘法",公式$\theta=(X^{T}X)^{-1}X^{T}Y$ ②迭代法:有一阶导数…
神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结构在NER中也取得了不错的效果.最近,我也阅读学习了一系列使用神经网络结构进行NER的相关论文,在此进行一下总结,和大家一起分享学习. 1 引言 命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出…
GoogLeNet是2014年 ILSVRC 冠军模型,top-5 错误率 6.7% ,GoogLeNet做了更大胆的网络上的尝试而不像vgg继承了lenet以及alexnet的一些框架,该模型虽然有22层,但参数量只有AlexNet的1/12. GoogLeNet论文指出获得高质量模型最保险的做法就是增加模型的深度(层数)或者是其宽度(层核或者神经元数),但是一般情况下更深或更宽的网络会出现以下问题: 1. 参数太多,容易过拟合,若训练数据集有限,这一问题更加突出:2. 网络越大计算复杂度越大…
迭代局部搜索(Iterated Local Search, ILS) 源代码下载请关注微信公众号[程序猿声],在后台回复:[ILS],不包括[]即可下载. 00 目录 局部搜索算法 简单局部搜索 迭代局部搜索 01 局部搜索算法 1.1 什么是局部搜索算法? 局部搜索是解决最优化问题的一种启发式算法.因为对于很多复杂的问题,求解最优解的时间可能是极其长的.因此诞生了各种启发式算法来退而求其次寻找次优解,局部搜索就是其中一种.它是一种近似算法(Approximate algorithms). 局部…
机器学习算法参数的网格搜索实现: //2019.08.031.scikitlearn库中调用网格搜索的方法为:Grid search,它的搜索方式比较统一简单,其对于算法批判的标准比较复杂,是一种复合交叉批判方式,不仅仅是准确率.其具体的实现方式如下(以KNN算法的三大常用超参数为例):#使用scikitlearn中的gridsearch来进行机器学习算法的超参数的最佳网格搜索方式#1-1首先使用字典的方式对KNN算法中的不同超参数组合进行定义param_grid=[{ "weights&quo…
前言 有段时间没有进行我们的微软数据挖掘算法系列了,最近手头有点忙,鉴于上一篇的神经网络分析算法原理篇后,本篇将是一个实操篇,当然前面我们总结了其它的微软一系列算法,为了方便大家阅读,我特地整理了一篇目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,我打算将微软商业智能中在DM这块所用到的算法全部集中在这个系列中,每篇包含简要算法原理.算法特点.应用场景以及具体的操作详细步骤,基本能涵盖大部分的商业数据挖掘的应用场景,有兴趣的童鞋可以点击查阅.本篇我们将要总结的算法为:Microsoft…
前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点击查阅,在开始Microsoft 神经网络分析算法之前,本篇我们先将神经网络分析算法做一个简单介绍,此算法由于其本身的复杂性,所以我打算在开始之前先将算法原理做一个简单的总结,因为本身该算法就隶属于高等数学的研究范畴,我们对算法的推断和验证过程不做研究,只介绍该算法特点以及应用场景,且个人技术能力有…
Weighted Sum Approach 该方法给出的表达式为: 首先,λ被称之为权重向量,观察和式,这完全就是m维向量的点乘公式嘛.具体的说,在目标空间中,把算法求出的一个目标点和原点相连构造成一个向量,此时,该方法的做法是将该向量与对应权重向量点乘,由向量点乘的几何意义可知,所得的数为该向量在权重向量方向上的投影长度,因为权重向量不变,最大/小化该长度值其实就是在优化该向量.可知若要增大该向量在权重向量上投影的长度,一方面可以增大/减小与权重向量的夹角,另一方面可以增大/减小该向量的长度.…
DEIndividual.py import numpy as np import ObjFunction class DEIndividual: ''' individual of differential evolution algorithm ''' def __init__(self, vardim, bound): ''' vardim: dimension of variables bound: boundaries of variables ''' self.vardim = va…
DE算法是遗传算法中一种比较流行的算法,这种算法比较简单,速度也比较快,下面给出一份示例代码 clear all; close all; clc 2 %Function to be minimized 3 D=2; 4 objf=inline('4*x1^2é2.1*x1^4+(x1^6)/3+x1*x2é4*x2^2+4*x2^4','x1','x2'); 5 objf=vectorize(objf); 6 %Initialization of DE parameters 7 N=20; %p…
代码来源于网络,写得非常棒 /*DE_test *对相应的Matlab程序进行测试 */ #include <iostream> #include <cmath> #include <ctime> using namespace std; //产生随机数,随机数为(0.0,1.0) double Rand_Double(void) { return static_cast<double>(rand()) / static_cast<double>…
1. 引入 最近在参加学校的计算机仿真大赛,时间好像有点不够,所以只完成了前面的一部分最基础的功能,中途还是选择了放弃.但是之前的部分的确觉得完成得还不错,在这里分享一下.题目是要完成一个宇宙飞船加油点的分配调度系统.完成的部分是给定坐标附近点的搜索. 2. 算法使用原因 我们要完成的一个是二维附近点搜索的算法.就是在给出若干个加油点的二维坐标,然后再给你一个当前坐标,你要搜索出距离当前坐标最近的一个加油站的坐标点.在考虑二维的附近点搜索时,最原始的方法肯定是将所有的加油点的坐标都加入到list…
学长好久之前讲的,本来好久好久之前就要写题解的,一直都没写,懒死_(:з」∠)_ Senior Pan Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 1332    Accepted Submission(s): 533 Problem Description Senior Pan fails in his discrete ma…
命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出其位置以及类型,如下图.它是NLP领域中一些复杂任务(例如关系抽取,信息检索等)的基础. NER一直是NLP领域中的研究热点,从早期基于词典和规则的方法,到传统机器学习的方法,到近年来基于深度学习的方法,NER研究进展的大概趋势大致如下图所示. 在基于机器学习的方法中,NER被当作是序列标注问题.与分类问题相比,序列标注问题中当前的预测标签不仅与当前的输入特征相关,还与之前的预测…
Alexnet是2014年Imagenet竞赛的冠军模型,准确率达到了57.1%, top-5识别率达到80.2%. AlexNet包含5个卷积层和3个全连接层,模型示意图: 精简版结构: conv1阶段 输入数据:227×227×3 卷积核:11×11×3:步长:4:数量(也就是输出个数):96 卷积后数据:55×55×96  (原图N×N,卷积核大小n×n,卷积步长大于1为k,输出维度是(N-n)/k+1) relu1后的数据:55×55×96 Max pool1的核:3×3,步长:2 Ma…
cnn每一层会输出多个feature map, 每个Feature Map通过一种卷积滤波器提取输入的一种特征,每个feature map由多个神经元组成,假如某个feature map的shape是m*n, 则该feature map有m*n个神经元.对于卷积层会有kernel, 记录上一层的feature map与当前层的卷积核的权重,因此kernel的shape为(上一层feature map的个数,当前层的卷积核数). CNN网络结构 一种典型卷积网络结构是LeNet-5,用来识别数字的…
901. 二叉搜索树中最接近的值 II 中文 English 给定一棵非空二叉搜索树以及一个target值,找到 BST 中最接近给定值的 k 个数. 样例 样例 1: 输入: {1} 0.000000 1 输出: [1] 解释: 二叉树 {1},表示如下的树结构: 1 样例 2: 输入: {3,1,4,#,2} 0.275000 2 输出: [1,2] 解释: 二叉树 {3,1,4,#,2},表示如下的树结构: 3 / \ 1 4 \ 2 挑战 假设是一棵平衡二叉搜索树,你可以用时间复杂度低于…
深度优先搜索(DFS) [算法入门] 1.前言深度优先搜索(缩写DFS)有点类似广度优先搜索,也是对一个连通图进行遍历的算法.它的思想是从一个顶点V0开始,沿着一条路一直走到底,如果发现不能到达目标解,那就返回到上一个节点,然后从另一条路开始走到底,这种尽量往深处走的概念即是深度优先的概念. 你可以跳过第二节先看第三节,:) 2.深度优先搜索VS广度优先搜索 2.1演示深度优先搜索的过程还是引用上篇文章的样例图,起点仍然是V0,我们修改一下题目意思,只需要让你找出一条V0到V6的道路,而无需最短…