给定一个英文语料库,里面有很多句子,已经做好了分词,/前面的是词,后面的表示该词的词性并且每句话由句号分隔,如下图所示 对于一个句子S,句子中每个词语\(w_i\)标注了对应的词性\(z_i\).现在的问题是,再给定一个句子S',生成每个词\(w'_i\)的词性\(z'_i\) 也就是要求使得概率\(P(Z|S)\)最大的\(Z\),由贝叶斯定理可得 \[ \begin{align*} P(Z|S)&=\frac{P(S|Z)P(Z)}{P(S)}\\ &\propto P(S|Z)·P(…
本文介绍 Stanford<From Languages to Information>课程中讲到的 单词拼写错误 纠正.背后的数学原理主要是贝叶斯公式.单词拼写错误纠正主要涉及到两个模型:一个是Nosiy Channel模型,它是贝叶斯公式中的似然函数:另一个模型是Language Model,它是贝叶斯公式中的先验概率. 一,问题描述 在这句话中“. . . was called a “stellar and versatile acress whose combination of sa…
一.前言:词性标注 二.经典维特比算法(Viterbi) 三.算法实现 四.完整代码 五.效果演示: 六.总结 一.前言:词性标注 词性标注(Part-Of-Speech tagging, POS tagging),是语料库语言学中将语料库中单词的词性按其含义和上下文内容进行标记的文本数据处理技术.词性标注可以由人工或特定算法完成,使用机器学习(machine learning)方法实现词性标注是自然语言处理(NLP)的研究内容.常见的词性标注算法包括隐马尔可夫模型(Hidden Markov…
HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑.   本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发.   隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型在实际的生活和生产中有着广泛的应用,包括语音识别,自…
隐马尔可夫模型(HMM)及Viterbi算法 https://www.cnblogs.com/jclian91/p/9954878.html HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑.   本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发.   隐马尔可夫模型(HMM,hidden Markov model)是可用于标…
HMM简介 对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑. 本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发. 隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型在实际的生活和生产中有着广泛的应用,包括语音识别,自然语言处理,…
ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based Collaborative Filtering Recommendation Algorithms" . - 番石榴的日志 - 网易博客 基于物品的协同过滤推荐算法--读"Item-Based Collaborative Filtering Recommendation Algorithm…
隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型主要用于语音识别,自然语言处理,生物信息,模式识别等领域. 引入   某天,你的女神告诉你说,她放假三天,将要去上海游玩,准备去欢乐谷.迪士尼和外滩(不一定三个都会去).  她呢,会选择在这三个地方中的某几个逗留并决定是否购物,而且每天只待在一个地方.根据你对她的了解,知道她去哪个地方,仅取决于她去的上一个地方,且是否购物的概率仅取决…
摘要:本文将先简单介绍Bandit 问题和本地差分隐私的相关背景,然后介绍基于本地差分隐私的 Bandit 算法,最后通过一个简单的电影推荐场景来验证 LDP LinUCB 算法. Bandit问题是强化学习中一类重要的问题,由于它定义简洁且有大量的理论分析,因此被广泛应用于新闻推荐,医学试验等实际场景中.随着人类进入大数据时代,用户对自身数据的隐私性日益重视,这对机器学习算法的设计提出了新的挑战.为了在保护隐私的情况下解决 Bandit 这一经典问题,北京大学和华为诺亚方舟实验室联合提出了基于…
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 项目中需要对敏感词做一个过滤,首先有几个方案可以选择: a.直接将敏感词组织成String后,利用indexOf方法来查询. b.传统的敏感词入库后SQL查询. c.利用Lucene建立分词索引来查询. d.利用DFA算法来进行. 首先,项目收集到的敏感词有几千条,使用a方案肯定不行.其次,为了方便以后的扩展性尽量减少对数据库的依赖,所以放弃b方案.然后Luc…
原始论文下载: 一种基于δ函数的图象边缘检测算法. 这篇论文读起来感觉不像现在的很多论文,废话一大堆,而是直入主题,反倒使人觉得文章的前后跳跃有点大,不过算法的原理已经讲的清晰了.     一.原理 文中提出的边缘检测算法原理也不是特别复杂,使用了一个低通滤波函数以及一个高通滤波函数,其形式分别为:                                             (1)                   (2) 当图像中的噪音比较少时,可以直接使用高通滤波器对图像进行滤…
一.三层(网络层)发现 算法来源:王娟娟.基于SNMP的网络拓扑发现算法研究.武汉科技大学硕士学位论文,2008 数据结构: 待检路由设备网关链表:存放指定深度内待检路由设备的网关信息,处理后删除. 拓扑信息链表:存放从已检测路由设备的网关信息. 子网信息链表:存放网关信息对应的子网信息. 基本思想: 类似于广度优先,在指定深度内运行算法,最后根据拓扑信息链表获得所有路由及其互联关系,根据子网信息链表各路由设备连接的子网及子网内所有活动主机的信息. 需要获得的信息: 路由信息如下图所示. 点击可…
1.背景知识 在讲SVD++之前,我还是想先回到基于物品相似的协同过滤算法.这个算法基本思想是找出一个用户有过正反馈的物品的相似的物品来给其作为推荐.其公式为:…
基于mapreduce的大规模连通图寻找算法 当我们想要知道哪些账号是一个人的时候往往可以通过业务得到两个账号之间有联系,但是这种联系如何传播呢? 问题 已知每个账号之间的联系 如: A B B C D E F C B G 得到 对应的一个人的账号 如: A B C F G为同一个人 D E 为同一个人 当前迭代次数11次 理论最大迭代次数: max_nick_count = max(nick_count) max_iterator = log2(max_nick_count) 62%的账号可在…
基于视觉的Web页面分页算法VIPS的实现源代码下载 - tingya的专栏 - 博客频道 - CSDN.NET 基于视觉的Web页面分页算法VIPS的实现源代码下载 分类: 技术杂烩 2006-04-28 10:09 8790人阅读 评论(117) 收藏 举报 算法web.net优化user微软 本来由于尚未优化好,暂时不提供下载的,但是由于众多的user迫切希望获取,因此只能将这个不成熟的版本提供出来!希望大家帮忙改进!另外,该源代码实现并未严格遵循VIPS算法,它与VIPS算法存在的差异包…
基于FP-Tree的关联规则FP-Growth推荐算法Java实现 package edu.test.ch8; import java.util.ArrayList; import java.util.List; public class Item implements Comparable { private String value; private Item preItem; // 前继节点Item private List<Item> nextItem = new ArrayList&…
在这一篇开篇之前,我需要解决一个问题,上一篇我们实现了基于FPGA的均值滤波算法的实现,最后的显示效果图上发现有一些黑白色的斑点,我以为是椒盐噪声,然后在做基于FPGA的中值滤波算法的实验时,我发现黑白斑点并没有消除,中值滤波本来是可以很好的滤掉椒盐噪声,所以说这里并不是椒盐噪声,最后经过我仔细的检查,终于明白了问题的所在.我所使用的Xilinx这款开发板的晶振为125Mhz,串口模块我使用前面设计好的代码,输入时钟为50Mhz,产生的接收完成标志信号也就是一个50Mhz的时钟周期,我这里将接收…
HMM:隐式马尔可夫链   HMM的典型介绍就是这个模型是一个五元组: 观测序列(observations):实际观测到的现象序列 隐含状态(states):所有的可能的隐含状态 初始概率(start_probability):每个隐含状态的初始概率 转移概率(transition_probability):从一个隐含状态转移到另一个隐含状态的概率 发射概率(emission_probability):某种隐含状态产生某种观测现象的概率 HMM模型可以用来解决三种问题: 参数(StatusSet…
基于Matlab的标记分水岭分割算法 http://blog.sina.com.cn/s/blog_725866260100rz7x.html 1 综述 Separating touching objects in an image is one of the more difficult image processing operations. The watershed transform is often applied to this problem. The watershed tra…
时隔两个多月了,前段时间在弄Socket,就没有弄这个了.现在好了,花了几天的时间,终于又完成了一小部分了.这一小节主要讲α,β,δ,θ等等波段之间的关系.废话不多说,直接给出这几天的成果. 上一次,我们分析了attention(专注度)和meditation(冥想度)与疲劳之间的关系.如下图 上面的曲线上一小节已经简单说明了,现在要说明的是曲线的前半部分是普通测试,后面一小段两对线有点分离的部分是模拟闭眼休息状态,全身放轻松.从图中可以看出是否精神集中从专注度和冥想度是可以简单的看出来了. 接…
HMM的模型  图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序列 话说,上面也是个贝叶斯网络,而贝叶斯网络中有这么一种,如下图: 代表:c确定时a和b独立.(c为实心圆代表:c已经被确定) 这时,如果把z1看成a,x1看成b,z2看成c的话,则因为第一个图的z1是不可观测的(所以z1是空心圆),也就是没确定,则x1和z2就一定有联系. 进一步,如果把z2.x2合在一起看成c的话,则x1和z2.x2就一定有联系,则x1和x…
AAAI 2018 论文 | 蚂蚁金服公开最新基于笔画的中文词向量算法 2018-01-18 16:13蚂蚁金服/雾霾/人工智能 导读:词向量算法是自然语言处理领域的基础算法,在序列标注.问答系统和机器翻译等诸多任务中都发挥了重要作用.词向量算法最早由谷歌在2013年提出的word2vec,在接下来的几年里,该算法也经历不断的改进,但大多是仅适用于拉丁字符构成的单词(比如英文),结合中文语言特性的词向量研究相对较少.本文介绍了蚂蚁金服人工智能部与新加坡科技大学一项最新的合作成果:cw2vec——…
转自http://blog.csdn.net/sinat_33741547/article/details/53002524 一 基本概念 基于图的模型是推荐系统中相当重要的一种方法,以下内容的基本思想是将用户行为数据表示为一系列的二元组,每一个二元组(u,i)代表用户u对物品i产生过行为,这样便可以将这个数据集表示为一个二分图. 假设我们有以下的数据集,只考虑用户喜不喜欢该物品而不考虑用户对物品的喜欢程度, 其中用户user=[A,B,C],物品item=[a,b,c],用户和物品有以下的关系…
网上关于HMM的学习资料.博客有很多,基本都是左边摘抄一点,右边摘抄一点,这里一个图,那里一个图,公式中有的变量说不清道不明,学起来很费劲. 经过浏览几篇博文(其实有的地方写的也比较乱),在7张4开的草稿纸上写公式.单步跟踪程序,终于还是搞清楚了HMM的原理. HMM学习过程: 1.搜索相关博客: 隐马尔可夫模型[博客](图示比较详细,前部分还可以,后部分公式有点乱):http://www.leexiang.com/hidden-markov-model HMM简介.forward算法和vite…
本文均属自己阅读源代码的点滴总结.转账请注明出处谢谢. 欢迎和大家交流.qq:1037701636 email:gzzaigcn2009@163.com 写在前面的闲话: 自我感觉自己应该不是一个非常擅长学习算法的人.过去的一个月时间里由于须要去接触了BP神经网络.在此之前一直都觉得算法界的神经网络.蚁群算法.鲁棒控制什么的都是特别高大上的东西,自己也就听听好了,未曾去触碰与了解过.这次和BP神经网络的邂逅.让我初步掌握到.理解透彻算法的基本原理与公式,转为计算机所能识别的代码流,这应该就是所谓…
目前基于麦克风阵列的声源定位方法大致可以分为三类:基于最大输出功率的可控波束形成技术.基于高分辨率谱图估计技术和基于声音时间差(time-delay estimation,TDE)的声源定位技术. 基于TDE的算法核心在于对传播时延的准确估计,一般通过对麦克风间信号做互相关处理得到.进一步获得声源位置信息,可以通过简单的延时求和.几何计算或是直接利用互相关结果进行可控功率响应搜索等方法.这类算法实现相对简单,运算量小,便于实时处理,因此在实际中运用最广. GCC-PHAT 基于广义互相关函数的时…
转自http://blog.csdn.net/sinat_33741547/article/details/53002524 一 基本概念 基于图的模型是推荐系统中相当重要的一种方法,以下内容的基本思想是将用户行为数据表示为一系列的二元组,每一个二元组(u,i)代表用户u对物品i产生过行为,这样便可以将这个数据集表示为一个二分图. 假设我们有以下的数据集,只考虑用户喜不喜欢该物品而不考虑用户对物品的喜欢程度, 其中用户user=[A,B,C],物品item=[a,b,c],用户和物品有以下的关系…
最近思考了一下未来,结合老师的意见,还是决定挑一个方向开始研究了,虽然个人更喜欢鼓捣.深思熟虑后,结合自己的兴趣点,选择了NLP方向,感觉比纯粹的人工智能.大数据之类的方向有趣多了,个人还是不适合纯粹理论研究 :).发现图书馆一本语言处理方面的书也没有后,在京东找了一本书--<NLP汉语自然语言处理原理与实践>,到今天看了大约150页,发现还是很模糊,决定找点代码来看. 从最简单的分词开始,发现分词的库已经很多了,选择了比较轻巧的jieba来研究.看了一下GitHub的基本介绍,突然感觉:我次…
一.名称 动态规划法应用 二.目的 1.贪婪技术的基本思想: 2.学会运用贪婪技术解决实际设计应用中碰到的问题. 三.要求 1.实现基于贪婪技术思想的Prim算法: 2.实现基于贪婪技术思想的Dijkstra算法. 四.内容 1.实现基于贪婪技术思想的Prim算法 1.1.Prim算法的伪代码描述 算法 Prim(G) //构造最小生成树的Prim算法 //输入:加权连通图G<V,E> //输出:E(T),组成G的最小生成树的边的集合 V(t)←{V0} //可以用任意顶点来初始化树的顶点集合…
Direct && Noise Channel 进一步把语言模型推理的模式分为了: 直推模式(Direct): 噪声通道模式(Noise channel). 直观来看: Direct 模式 Noise Channel 模式 也就是说把数据和标签调换了位置. 公式推导 Direct: $$y_{test}=argmax\;P(y_{test}|\theta,c,x_{test})\;\;\;c=context$$ Noise Channel: $$y_{test}=argmax\;P(y)P…