SIFT特征点检测学习一(转载)】的更多相关文章

新手上路,先转载学习tornadomeet的博客:http://www.cnblogs.com/tornadomeet/archive/2012/08/16/2643168.html 特征点检测学习_1(sift算法) sift算法在cv领域的重要性不言而喻,该作者的文章引用率在cv界是number1.本篇博客只是本人把sift算法知识点整理了下,以免忘记.本文比较早的一篇博文opencv源码解析之(3):特征点检查前言1 中有使用opencv自带的sift做了个简单的实验,而这次主要是利用Ro…
依旧转载自作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 特征点检测学习_2(surf算法) 在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高.后面有不少学者对其进行了改进,其中比较出名的就是本文要介绍的surf算法,surf的中文意思为快速鲁棒特征.本文不是专门介绍surf所有理论(最好的理论是作者的论文)的,只是对surf算法进行了…
本代码使用VLFeat库中的函数对一幅图像进行了SIFT检测 需要事先配置好VLFeat和OpenCV,VLFeat的配置参考前一篇博文,OpenCV的配置网上一大堆,自己去百度 #include "stdafx.h" #include <stdio.h> #include <tchar.h> #include <opencv2/opencv.hpp> #include <stdio.h> using namespace cv; usin…
SIFT的步骤如下: (1) 尺度空间极值检测(Scale-space Extrema Detection) 也就是在多尺度高斯差分(Difference of Gauss)空间中检测极值点(3x3x3 区域极值), 作为候选的关键点(Potential keypoints). (2) 定位关键点(Keypoint Localization),舍弃低对比度关键点和高边缘响应的关键点. 确定候选关键点后,使用泰勒级数展开来精确定位极值点.舍弃亮度值较低(对比度较低)的极值点. 同时由于DoG空间是…
类似于ORBSLAM中的ORB.txt数据库. https://blog.csdn.net/lingyunxianhe/article/details/79063547   ORBvoc.txt是怎么建的有人知道吗如何可以建一个自己的ORBvoc.txt呢  就是怎么建一个自己的ORB词典数据库..  比如:每一个字都有一个自己的特征描述子 建立一个词典..…
在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高.后面有不少学者对其进行了改进,其中比较出名的就是本文要介绍的surf算法,surf的中文意思为快速鲁棒特征.本文不是专门介绍surf所有理论(最好的理论是作者的论文)的,只是对surf算法进行了下整理,方便以后查阅. 网上有些文章对surf做了介绍,比如: http://wuzizhang.blog.163.com/blog/static/78…
1.Harris角点检测 Harris角点检测算法是一个极为简单的角点检测算法,该算法在1988年就被发明了,算法的主要思想是如果像素周围显示存在多于一个方向的边,我们认为该点为兴趣点.基本原理是根据公式: 化简为求解矩阵,最后根据矩阵的特征值判断是否为角点 实现效果: 代码(不用OpenCV): # -*- coding: utf-8 -*- from pylab import * from PIL import Image from numpy import * from scipy.ndi…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 特征点检测广泛应用到目标匹配,目标跟踪,三维重建等应用中,在进行目标建模时会对图像进行目标特征的提取,常用的有颜色,角点,特征点,轮廓,纹理等特征.而下面学习常用的特征点检测. 总结一下提取特征点的作用: 1,运动目标跟踪 2,物体识别 3,图像配准 4,全景图像拼接 5,三维重建 而一种重要的点…
SIFT(Scale Invariant Feature Transform),尺度空间不变特征,目前手工设计的最好vision特征. 以下是学习http://blog.csdn.net/zddblog/article/details/7521424后的收获. 一.尺度空间 gaussian pyramid的产生: 1.为避免对第一组第一层图片(原始图片)做高斯滤波导致损失,在其基础上将尺度扩大一倍作为-1层,方法是用=0.5做高斯滤波. 2.对每组(octave)倒数第三张图片做降采样,产生下…
一.特征匹配简介 二.暴力匹配 1.nth_element筛选 #include "opencv2/opencv.hpp" #include <opencv2/nonfree/nonfree.hpp>//SIFT #include <opencv2/legacy/legacy.hpp>//BFMatch暴力匹配 #include <vector> #include<iostream> using namespace std; using…