接口--Comparable接口【哈夫曼树】】的更多相关文章

我们在字符串中见到过CompareTo方法,知道这个方法是用于比较字符串顺序的,根据字典顺序进行排序.Java中很多类也都有CompareTo方法,甚至于排序算法的底层组成也是依赖于比较的,而这个比较就是依赖于各种数据类型的CompareTo或者Compare方法.Java中所有的compareTo方法都源于一个共同的接口,那就是Comparable.这个接口只有一个方法,那就是CompareTo.所有想要具有比较功能的类,都建议实现这个接口,而非是自己定义这个功能,这是面向对象的概念(将具有相…
一,介绍 1)构造赫夫曼树的算法是一个贪心算法,贪心的地方在于:总是选取当前频率(权值)最低的两个结点来进行合并,构造新结点. 2)使用最小堆来选取频率最小的节点,有助于提高算法效率,因为要选频率最低的,要么用排序,要么用堆.用堆的话,出堆的复杂度为O(logN),而向堆中插入一个元素的平均时间复杂度为O(1),在构建赫夫曼树的过程中,新生成的结点需要插入到原来的队列中,故用堆来维持这种顺序比排序算法要高效地多. 二,赫夫曼算法分析 ①用到的数据结构分析 首先需要构造一棵赫夫曼树,因此需要二叉链…
20172332 2017-2018-2 <程序设计与数据结构>Java哈夫曼编码实验--哈夫曼树的建立,编码与解码 哈夫曼树 1.路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径.通路中分支的数目称为路径长度.若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1. 2.结点的权及带权路径长度 若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权.结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积. 3.树的带权…
我们经常会用到文件压缩,压缩之后文件会变小,便于传输,使用的时候又将其解压出来.为什么压缩之后会变小,而且压缩和解压也不会出错.赫夫曼编码和赫夫曼树了解一下. 赫夫曼树: 它是一种的叶子结点带有权重的特殊二叉树,也叫最优二叉树.既然出现最优两个字肯定就不是随便一个叶子结点带有权重的二叉树都叫做赫夫曼树了. 赫夫曼树中有一个很重要的概念就是带权路径,带权路径最小的才是赫夫曼树. 树的路径长度是从根结点到每一个结点的长度之和,带权路径就是每一个结点的长度都乘以自己权重,记做WPL. 假设有abcd数…
霍夫曼树 基本介绍和创建 基本介绍 又称哈夫曼树,赫夫曼树 给定n个权值作为n个叶子节点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称为最优二叉树 霍夫曼树是带权路径长度最短的树,权值较大的节点离根较近 几个重要的概念 路径和路径长度:一棵树中从一个节点往下可以达到的子节点之间的通路叫做路径,通路中分支的数目称为路径长度.如规定根节点的层数为1,则从根节点到L层节点的路径长度为L - 1 节点的权及带权路径长度:若将书中的节点赋值给一个有着某种含义的数值,则这个数值称为节点的权,带…
Description Farmer John wants to repair a small length of the fence around the pasture. He measures the fence and finds that he needsN (1 ≤ N ≤ 20,000) planks of wood, each having some integer lengthLi (1 ≤ Li ≤ 50,000) units. He then purchases a sin…
参考自:http://blog.csdn.net/jdhanhua/article/details/6621026 哈夫曼树 哈夫曼树(霍夫曼树)又称为最优树. 1.路径和路径长度在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径.通路中分支的数目称为路径长度.若规定根结点的层数为1,则从根结点到第L层结点的路径长 2.结点的权及带权路径长度若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权.结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积…
前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 哈夫曼树的介绍 Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树. 定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树. 这…
本篇博文将介绍什么是哈夫曼树,并且如何在java语言中构建一棵哈夫曼树,怎么利用哈夫曼树实现对文件的压缩和解压.首先,先来了解下什么哈夫曼树. 一.哈夫曼树 哈夫曼树属于二叉树,即树的结点最多拥有2个孩子结点.若该二叉树带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近. (一)树的相关概念 1.路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径.通路中分支的数目…
目录 1.哈夫曼树简述 2.构造树的节点 3.构造哈夫曼树的类(压缩) 4.构造哈夫曼树的类(解压) 5.整体工程文件(包括测试类) 6.结果 7.参考链接 1.哈夫曼树简述 给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree). 为什么使用哈夫曼编码压缩文件? 一个字符八个bits,若使用编码来表示字母,节省空间,传输速度快.根据字母出现的频率构建哈夫曼树,频数即为权值,频数出现最多的字母更靠近哈夫曼树的根…