HDU4704+费马小定理】的更多相关文章

费马小定理题意:求s1+s2+s3+...+sn;si表示n划分i个数的n的划分的个数,如n=4,则s1=1,s2=3    利用隔板定理可知,就是求(2^n-1)%mod-----Y    现在已知 (2^mod-1)%mod = 1,所以  Y = 2^( (n%(mod-1) -1 +mod)%mod )%mod 证明( 定理:a^(p-1)==1%p,gcd(a,p)==1 ):    (http://www.cnitblog.com/luckydmz/archive/2008/06/0…
Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 589    Accepted Submission(s): 292 Problem Description   Sample Input 2   Sample Output 2 Hint 1. For N = 2, S(1) = S(2) = 1. 2. The input…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4704 题目大意: 看似复杂,其实就是求整数n的划分数,4=1+1+2和4=1+2+1是不同的.因而可知答案是2n-1. 题目分析: 因为n实在是太大太大了,这可咋办啊?!n<10100000. 做这场的时候没有注意到,也是当时没有看过什么是费马小定理,居然跟模值有关系!mod=1000000007.这个mod有什么特点呢?它是个质数. 费马小定理揭示了:当p是一个素数并且a和p互质时,ap-1 %…
链接:传送门 题意:求 N 的拆分数 思路: 吐嘈:求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 , 4 = 1 + 1 + 2 , 4 = 1 + 2 + 1 , 4 = 2 + 1 + 1 , 4 = 1 + 1 + 1 + 1,共 8 种,你没有看错,这跟普通概念上的拆分数有很大的不同,拆分数不考虑顺序,即 4 = 1 + 3 与 4 = 3 + 1 是相同的,及其坑爹,所以可以发现 N…
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                         (全题文末) 知识点: 整数n有种和分解方法. 费马小定理:p是质数,若p不能整除a,则 a^(p-1) ≡1(mod p).可利用费马小定理降素数幂. 当m为素数,(m必须是素数才能用费马小定理) a=2时.(a=2只是题中条件,a可以为其他值) mod m =  *      //  k=…
又见斐波那契数列 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 斐波那契数列大家应该很熟悉了吧.下面给大家引入一种新的斐波那契数列:M斐波那契数列. M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,聪明的你能求出F[n]的值吗?   输入 输入包含多组测试数据:每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n &l…
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友就打表找到公式了,然后我就写了一个快速幂加个费马小定理就过了去看别的题了,赛后找到了一个很不错的博客:传送门,原来这道题也可以用DP+矩阵快速幂AC.下面说下组合数学的做法: 首先一共有4^n种情况,我们减去不符合条件的情况就行了,从中取k个进行染红绿色一共C(n,k)种情况,剩下的蓝黄色一共有2^…
Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29). Take X = 1 for an example. The positive integer divisors of 2004^1…
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃花源了.猪…
Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的总和. analyse: N可达10^100000,只能用数学方法来做. 首先想到的是找规律.通过枚举小数据来找规律,发现其实answer=pow(2,n-1); 分析到这问题就简单了.由于n非常大,所以这里要用到费马小定理:a^n ≡ a^(n%(m-1)) * a^(m-1)≡ a^(n%(m-…