建立神经网络的主要步骤是: 1. 定义模型结构(例如输入特征的数量) 2. 初始化模型的参数 3. 循环: # 3.1 计算当前损失(正向传播) # 3.2 计算当前梯度(反向传播) # 3.3 更新参数(梯度下降) 实现代码 #单层神经网络,不含隐含层 import numpy as np import matplotlib.pyplot as plt import h5py #是与H5文件中存储的数据集进行交互的常用软件包. from lr_utils import load_dataset…
在<神经网络的梯度推导与代码验证>之CNN的前向传播和反向梯度推导 中,我们学习了CNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensorflow验证我们所得结论的准确性,以便将抽象的数学符号和实际数据结合起来,将知识固化.更多相关内容请见<神经网络的梯度推导与代码验证>系列介绍. 需要用到的库有tensorflow和numpy,其中tensorflow其实版本>=2.0.0就行 import tensorflow as tf import n…
在<神经网络的梯度推导与代码验证>之vanilla RNN的前向传播和反向梯度推导中,我们学习了vanilla RNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensorflow验证我们所得结论的准确性,以便将抽象的数学符号和实际数据结合起来,将知识固化.更多相关内容请见<神经网络的梯度推导与代码验证>系列介绍. 提醒: 后续会反复出现$\boldsymbol{\delta}^{l}$这个(类)符号,它的定义为$\boldsymbol{\delta}^…
问题描述:样本为所有恐龙名字,为了构建字符级语言模型来生成新的名称,你的模型将学习不同的名称模式,并随机生成新的名字. 在这里你将学习到: 如何存储文本数据以便使用rnn进行处理. 如何合成数据,通过每次采样预测,并将其传递给下一个rnn单元. 如何构建字符级文本生成循环神经网络. 为什么梯度修剪很重要? import numpy as np import random import time import cllm_utils 1 - 问题描述 1.1 - 数据集与预处理 # 获取名称 dat…
[源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构 目录 [源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构 0x00 摘要 0x01 Engine 0x02 GraphRoot 2.1 构建 2.2 作用 0x03 GraphTask 3.1 定义 3.2 outstanding_tasks_ 3.2.1 任务结束 3.2.2 增加 3.2.3 递减 3.3 keep_graph 3.4 dependencies_ 3.5 not_ready…
上一章的神经网络实际上是前馈神经网络(feedforward neural network),也叫多层感知机(multilayer perceptron,MLP).具体来说,每层神经元与下一层神经元全互联,神经元之间不存在同层或跨层连接:输入层神经元仅接受外界输入,不进行函数处理:隐藏层与输出层包含功能神经元,对信号进行加工:最终结果由输出层神经元输出.“前馈”是说网络拓补结构上不存在环路或回路,而不是指网络信号不能向后传递. 前向传播(FP) 所谓前向传播,就是根据一些列包含偏置项的权重矩阵Θ…
今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络. 话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完.其实很多章节都看了,不过还没写出来,先从第5章开始吧,第2-4章比较基础,以后再补!基本是笔记+翻译,主要是自己写一下以后好翻阅. PRML第5章介绍了神经网络neu…
为什么要使用backpropagation? 梯度下降不用多说,如果不清楚的可以参考梯度下降算法. 神经网络的参数集合theta,包括超级多组weight和bais. 要使用梯度下降,就需要计算每一个参数的梯度,但是神经网络常常有数以万计,甚至百万的参数,所以需要使用backpropagation来高效地计算梯度. backpropagation的推导 backpropagation背后的原理其实很简单,就是求导的链式法则. 我们从上面的公式开始推导.以其中一个神经元为例. 如上面的红框中所示,…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) Lecture 6: Brief Introduction of Deep Learning 本节课主要围绕Deep Learing三步骤: (1)function set (2)goodness of function (…
[源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎 目录 [源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎 0x00 摘要 0x01 前文回顾 1.1 训练过程 1.2 例子 1.3 源码剖析 0x02 Python 调用过程 2.1 调用 2.2 引擎 0x03 c++世界 3.1 支撑系统 3.1.1 Edge 3.1.2 Edge 相关函数 3.1.3 Python 扩展 3.2 引入 3.2.1 初始化 3.2.1.1 初始化继承体系 3.2…