整个deep learing 系列课程主要包括哪些内容 Intro to Deep learning…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learning What is a Neural Network? 让我们从一个房价预测的例子开始讲起. 假设你有一个数据集,它包含了六栋房子的信息.所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格.这时,你想要拟合一个根据房屋面积预测房价的函数. 如果使用线性回归进行拟合,那么可以拟合出一条直线.但…
Coursera课程<面向 Web 开发者的 HTML.CSS 与 Javascript> Johns Hopkins University Yaakov Chaikin Week1 Introduction to HTML5 对于网页来说,HTML定义的是网页的骨架(structure),CSS定义的是网页的风格(style),JavaScript定义的是网页的动作(Behavior). 使用http://validator.w3.org可以来验证你写的HTML是否符合标准. HTML标签的…
5 Neural Networks (part two) content: 5 Neural Networks (part two) 5.1 cost function 5.2 Back Propagation 5.3 神经网络总结 接上一篇4. Neural Networks (part one).本文将先定义神经网络的代价函数,然后介绍逆向传播(Back Propagation: BP)算法,它能有效求解代价函数对连接权重的偏导,最后对训练神经网络的过程进行总结. 5.1 cost func…
4. Neural Networks (part one) Content: 4. Neural Networks (part one) 4.1 Non-linear Classification. 4.2 Neural Model(神经元模型) 4.3 Forward Propagation 4.4 神经网络实现与或非门以及异或门 4.4.1 实现与或非门(AND/OR/NOT) 4.4.2 实现异或/同或门(XOR/XNOR) 4.5 Multi-class classification k…
Diffusion-Convolutional Neural Networks (传播-卷积神经网络)2018-04-09 21:59:02 1. Abstract: 我们提出传播-卷积神经网络(DCNNs),一种处理 graph-structured data 的新模型.随着 DCNNs 的介绍,我们展示如何从 graph structured data 中学习基于传播的表示(diffusion-based representations),然后作为节点分类的有效基础.DCNNs 拥有多个有趣…
Progressive NN Progressive NN是第一篇我看到的deepmind做这个问题的.思路就是说我不能忘记第一个任务的网络,同时又能使用第一个任务的网络来做第二个任务. 为了不忘记之前的任务,他们的方法简单暴力:对所有的之前任务的网络,保留并且fix,每次有一个新任务就新建一个网络(一列). 而为了能使用过去的经验,他们同样也会将这个任务的输入输入进所有之前的网络,并且将之前网络的每一层的输出,与当前任务的网络每一层的输出一起输入下一层. 每次有一个新的任务,就重新添加一列,然…
Improving neural networks by preventing co-adaptation of feature detectors 是Hinton在2012年6月份发表的,从这篇文章开始提出dropout的相关理论.该文章中没有详细的理论说明,只是通过实验说明了dropout在大数据量的情况下是有效的.以下记录论文的重要部分 1.为了防止overfitting,使用dropout的方式,在数据量较大的情况下比较有效果. 2.hidden unit采用0.5的比例,随机被忽略.…
1. 论文思想 将3D卷积分解为spatial convolution in each channel and linear projection across channels. (spatial convolution + linear projection.) 2. 两种卷积对比 3. 总结 简单概括就是spatial conv + linear projection,但是在spatial conv的时候用了一个residual connection,感觉很有道理,例如是一个vertica…
1. 论文思想 一维滤过器.将三维卷积分解成三个一维卷积.convolution across channels(lateral), vertical and horizontal direction. 2. 计算量对比 变换后计算量: 对比: 3. 总结 因为spatial convolution会带来大量的参数以及是非常耗时的,本文将三维卷积分解成了三个一维的卷积,极大的减少了计算量.其实,本文也引入了不对称卷积,再后来也证实了这种不对称卷积Nx1和1xN,对准确率是有提升的.…