机器学习-线性回归LinearRegression】的更多相关文章

概述 今天要说一下机器学习中大多数书籍第一个讲的(有的可能是KNN)模型-线性回归.说起线性回归,首先要介绍一下机器学习中的两个常见的问题:回归任务和分类任务.那什么是回归任务和分类任务呢?简单的来说,在监督学习中(也就是有标签的数据中),标签值为连续值时是回归任务,标志值是离散值时是分类任务.而线性回归模型就是处理回归任务的最基础的模型. 形式 在只有一个变量的情况下,线性回归可以用方程:y = ax+b 表示.而如果有多个变量,也就是n元线性回归的形式如下: n元线性回归 在这里我们将截断b…
python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets import load_boston from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model i…
散点图和KNN预测 一丶案例引入 # 城市气候与海洋的关系研究 # 导包 import numpy as np import pandas as pd from pandas import Series,DataFrame import matplotlib.pyplot as plt %matplotlib inline # 使用画图模块时,jupyter工具需要声明 from pylab import mpl # mpl 提供画图的包 mpl.rcParams['font.sans-seri…
在上次的代码重写中使用了sklearn.LinearRegression 类进行了线性回归之后猜测其使用的是常用的梯度下降+反向传播算法实现,所以今天来学习它的源码实现.但是在看到源码的一瞬间突然有种怀疑人生的感觉,我是谁?我在哪?果然大佬的代码只能让我膜拜. 在一目十行地看完代码之后,我发现了一个问题,梯度的单词是gradient,一般在代码中会使用缩写grad 来表示梯度,而在这个代码中除了Gram 之外竟然没有一个以'g' 开头的单词,更不用说gradient 了.那么代码中包括注释压根没…
原文地址 ? 传送门 线性回归 线性回归是一种较为简单,但十分重要的机器学习方法.掌握线性的原理及求解方法,是深入了解线性回归的基本要求.除此之外,线性回归也是监督学习回归部分的基石. 线性回归介绍 在了解线性回归之前,我们得先了解分类和回归问题的区别. 首先,回归问题和分类问题一样,训练数据都包含标签,这也是监督学习的特点.而不同之处在于,分类问题预测的是类别,回归问题预测的是连续值. 例如,回归问题往往解决: 股票价格预测 房价预测 洪水水位线 上面列举的问题,我们需要预测的目标都不是类别,…
线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元线性回归(Simple Linear Regression): 假设只有一个自变量x(independent variable,也可称为输入input, 特征feature),其与因变量y(dependent variable,也可称为响应response, 目标target)之间呈线性关系,当然x…
导入类库 import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.feature_extraction import DictVectorizer fr…
import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import train_test_split def load_data(): diabetes = datasets.load_diabetes() return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0…
一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_variance_score) 4 中值绝对误差(Median absolute error) 5 R2 决定系数(拟合优度) 模型越好:r2→1 模型越差:r2→0 二 逻辑斯蒂回归 1 概述 在逻辑斯蒂回归中,我们将会采用sigmoid函数作为激励函数,所以它被称为sigmoid回归或对数几率回归…
线性回归是分析一个变量与另外一个或多个变量(自变量)之间,关系强度的方法. 线性回归的标志,如名称所暗示的那样,即自变量与结果变量之间的关系是线性的,也就是说变量关系可以连城一条直线. 模型评估:量化预测的质量 https://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation 线性回归的 7种 预测质量方法, 1.导包, # 导包 import numpy as np import matplotlib.…