基于SQLite3的C学习总结】的更多相关文章

从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Inceptionism.在这篇文章中,我们将讨论几个不同的深度学习框架,库以及工具. 深度学习是机器学习和人工智能的一种形式,利用堆积在彼此顶部的神经网络的多个隐藏层来尝试形成对数据更深层次的“理解”. 最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的…
特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ…
原文网址:http://www.cnblogs.com/luxiaofeng54/archive/2011/08/20/2147086.html 基于 Android NDK 的学习之旅-----数据传输二(引用数据类型)(附源码) 基于 Android NDK 的学习之旅-----数据传输(引用数据类型) 接着上篇文章继续讲.主要关于引用类型的数据传输,本文将介绍字符串传输和自定义对象的传输. 1.主要流程 1.  String 字符串传输 a)         上层定义一个native的方法…
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Based RL),以及基于模型的强化学习算法框架Dyna. 本篇主要参考了UCL强化学习课程的第8讲和Dyna-2的论文. 1. 基于模型的强化学习简介 基于价值的强化学习模型和基于策略的强化学习模型都不是基于模型的,它们从价值函数,策略函数中直接去学习,不用学习环境的状态转化概率模型,即在状态$s$下采…
前面介绍过了Tensorflow的基本概念,比如如何使用tensorboard查看计算图.本篇则着重介绍和整理下Constant相关的内容. 基于TensorFlow的深度学习系列教程 1--Hello World! 常量的概念 在tensorflow中,数据分为几种类型: 常量Constant.变量Variable.占位符Placeholder.其中: 常量:用于存储一些不变的数值,在计算图创建的时候,调用初始化方法时,直接保存在计算图中 变量:模型训练的参数,比如全连接里面的W和bias 占…
本文出处:http://blog.csdn.net/u012377333/article/details/47006087 接上篇介绍<基于CentOS的Mysql学习补充二--使用Shell创建数据库>,本文继续探索关于Shell和MySQL的结合使用,我不知道当一个数据库设计完毕之后怎样高速的创建设计好的数据库表和加入对应基本数据,我眼下知道的就是使用Shell和SQL脚本来达到我的目的--高速的.多次的.可反复利用的创建数据库表. 创建一个数据库表的SQL脚本: /***********…
目录 基于 Keras 用深度学习预测时间序列 问题描述 多层感知机回归 多层感知机回归结合"窗口法" 改进方向 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction With Deep Learning in Keras 原文使用 python 实现模型,这里是用 R 基于 Keras 用深度学习预测时间序列 时间序列预测一直以来是机器学习中的一个难题. 在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建神经网络…
[基于pythpn的深度学习] 环境:    windows/linux-ubuntu    Tensorflow (基于anaconda)        *安装 (python3.5以上不支持)            在anaconda中创建环境            下载tensorflow            (pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/             https://mirrors.tuna…
基于OpenCL的深度学习工具:AMD MLP及其使用详解 http://www.csdn.net/article/2015-08-05/2825390 发表于2015-08-05 16:33| 5921次阅读| 来源CSDN| 2 条评论| 作者AMD中国异构计算部 深度学习异构计算异构编程MLPopencl 摘要:本文介绍AMD深度学习团队开发的MLP学习工具软件的使用,为深度学习研究人员和开发商提供一个高性能.高易用性的深度学习的软硬件平台方案.AMD-MLP基于OpenCL,支持不同类型…
有一定Python和TensorFlow基础的人看应该很容易,各领域的应用,但比较广泛,不深刻,讲硬件的部分可以作为入门人的参考. <Keras快速上手基于Python的深度学习实战>系统地讲解了深度学习的基本知识.建模过程和应用,并以深度学习在推荐系统.图像识别.自然语言处理.文字生成和时间序列中的具体应用为案例,详细介绍了从工具准备.数据获取和处理到针对问题进行建模的整个过程和实践经验. <Keras快速上手>PDF,531页,带书签目录,彩色配图,文字可以复制. 配套源代码和…