「tricks」平凡二分幻术】的更多相关文章

[LOJ 2070] 「SDOI2016」平凡的骰子 [题目链接] 链接 [题解] 原题求的是球面面积 可以理解为首先求多面体重心,然后算球面多边形的面积 求重心需要将多面体进行四面体剖分,从而计算出每一个四面体的重心和体积,加权平均即为整个多面体的重心 四面体体积可以用一个点引出的三条向量的积乘 \(\frac 1 6\) 四面体重心坐标是四个顶点坐标平均数 根据题目提示,球面多边形面积为三个二面角之和减去 \(\pi\),那么我们需要求二面角 先求出法向量,然后点积求向量二面角 [代码] /…
题解 用了一堆迷之复杂的结论结果迷之好写的计算几何???? 好吧,要写立体几何了 如果有名词不懂自己搜吧 首先我们求重心,我们可以求带权重心,也就是x坐标的话是所有分割的小四面体的x坐标 * 四面体体积的和除以骰子的体积,y,z坐标同理 然后我们把这个骰子四面体剖分,剖分的话就是随便选在骰子内的一个点,对于骰子的每个面找相邻的三个点和这个点作为顶点组成的四面体 四面体的重心是四个点三维坐标和除以4 四面体的体积是三维混合积的绝对值除以6 然后对于每个面,我们把它剖分成三角形,发现它们二面角的和就…
题面 传送门 做一道题学一堆东西不管什么时候都是美好的体验呢-- 前置芝士 混合积 对于三个三维向量\(a,b,c\),定义它们的混合积为\((a\times b)\cdot c\),其中$\times \(表示叉乘,\)\cdot\(表示点乘,记为\)[a b c]$ 关于它的几何意义的话--图片来自网络 其中\(Prj_{a\times b}c\)代表的是\(c\)这个向量在\(a\times b\)这个向量上的投影 那么显然我们最后得到的是以这三个向量为三条临边的一个六面体的体积 四面体体…
「ZJOI2018」胖(ST表+二分) 不开 \(O_2\) 又没卡过去是种怎么体验... 这可能是 \(ZJOI2018\) 最简单的一题了...我都能 \(A\)... 首先我们发现这个奇怪的图每个点扩展的是一个区间 \([L,R]\),然后我们就可以二分端点了. 一个点 \(x\) 扩展到点 \(y\) 至少要 \(|x-y|\) 的时间,所以我们把 \(a_i\) 排个序,在上面二分一个合法的区间使得 \(|x-a_l|\leq t\) 且 \(|x-a_r|\leq t\) 然后若能扩…
#2006. 「SCOI2015」小凸玩矩阵 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 小凸和小方是好朋友,小方给小凸一个 N×M N \times MN×M(N≤M N \leq MN≤M)的矩阵 A AA,要求小凸从其中选出 N NN 个数,其中任意两个数字不能在同一行或同一列,现小凸想知道选出来的 N NN 个数中第 K KK 大的数字的最小值是多少. 输入格式 第一行给出三个…
「NOIP2010」关押罪犯(二分图染色+二分答案) 洛谷 P1525 描述:n个罪犯(1-N),两个罪犯之间的仇恨值为c,m对仇恨值,求怎么分配使得两件监狱的最大仇恨值最小. 思路:使最大xxx最小,描述就很二分.二分一个答案x后,对仇恨值大于x的罪犯之间构成的图进行二分图染色(相邻节点不染同一种颜色,总共两种颜色),染色成功则答案可行,复杂度\(O(nlogn)\). 二分图染色:把每个未标记的节点标记为任意一种颜色,对其进行一次 BFS,将该节点所在的连通分支全部染色,每一次扩展把未被染色…
loj2985「WC2019」I 君的商店(二分,思维) loj Luogu 题解时间 真的有点猛的思维题. 首先有一个十分简单的思路: 花费 $ 2N $ 确定一个为 $ 1 $ 的数. 之后每次随机选择一对没有确定的数 $ x,y $ 与 $ 1 $ 比较,再将 $ x,y $ 相互比较,总能确定其中一个数的值. 这样是 $ 7N $ . 而另一方面,这道题也是正解来自部分分. 考虑子任务3: 很明显首先一次比较确定是先0后1还是先1后0, 之后二分确定分界的位置即可,花费是 $ 3logN…
loj3161「NOI2019」I 君的探险(随机化,整体二分) loj Luogu 题解时间 对于 $ N \le 500 $ 的点,毫无疑问可以直接 $ O(n^2) $ 暴力询问解决. 考虑看起来最好做的 $ B $ 类. 由于有每个点的父亲编号小于该点的优良特性,很容易想到整体二分. 考虑用整体二分求出每个点的父亲: 对于一个分治区间,毫无疑问 $ [l,mid] $ 的节点的父亲在左区间. 而对于另外一半节点,考虑将左半节点全部modify,此时右半某个节点亮起则说明左半节点至少有一个…
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k\).第一次修改之前及每次修改之后,都要求你找到一个同样长度为 \(n\) 的单调不降序列 \(B_1, \ldots , B_n\),使得 \(\sum_{i=1}^n (A_i −B_i)^2\) 最小,并输出该最小值.需要注意的是每次操作的影响都是独立的,也即每次操作只会对当前询问造成影响.为…
真是 \(6\) 道数据结构毒瘤... 开始口胡各种做法... 「HNOI2016」网络 整体二分+树状数组. 开始想了一个大常数 \(O(n\log^2 n)\) 做法,然后就被卡掉了... 发现直接维护一定是 \(O(n\log^3 n)\) 的,所以我当时选择了用 \(LCT\) 维护树上路径,跑起来比树剖可能都慢... 其实路径加单点查可以直接在 \(dfs\) 序上弄树状数组的,虽然也是 \(O(n\log^2 n)\) 的,但是肯定能通过此题... \(Code\ Below:\)…