题解 P4705 【玩游戏】】的更多相关文章

P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^m\frac{(a_i+a_j)^k}{nm} x^k \] 求出\(f\)点前\(t\)项 \[ \begin{aligned} nmf(x)&=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^m\sum_{l=0}^k\binom{k}{l}a_i^lb_j^{k-l}x…
题目描述 Alice 和 Bob 又在玩游戏. 对于一次游戏,首先 Alice 获得一个长度为 ​ 的序列 ​,Bob 获得一个长度为 ​ 的序列 bb.之后他们各从自己的序列里随机取出一个数,分别设为 ​,定义这次游戏的 ​次价值为​. 由于他们发现这个游戏实在是太无聊了,所以想让你帮忙计算对于 ​一次游戏​ 次价值的期望是多少. 由于答案可能很大,只需要求出模 ​下的结果即可. 输入输出格式 输入格式: 第一行两个整数 ​,分别表示 Alice 和 Bob 序列的长度. 接下来一行 ​ 个数…
题目大意:对于每个$k\in[1,t]$,求:$$\dfrac{\sum\limits_{i=1}^n\sum\limits_{j=1}^m(a_i+b_j)^k}{nm}$$$n,m,t\leqslant10^5$ 题解:发现这个$nm$是一个定值,可以先不考虑,先对每一个$k$来求$$\begin{align*}&\sum\limits_{i=1}^n\sum\limits_{j=1}^m(a_i+b_j)^k\\=&\sum\limits_{i=1}^n\sum\limits_{j=…
题面 传送门 题解 妈呀这辣鸡题目调了我整整三天--最后发现竟然是因为分治\(NTT\)之后的多项式长度不是\(2\)的幂导致把多项式的值存下来的时候发生了一些玄学错误--玄学到了我\(WA\)的点全都是\(WA\)在\(2\)的幂次行里-- 看到这种题目二话不说先推倒 \[ \begin{aligned} [x^k]Ans &={1\over nm}\sum_{i=1}^n\sum_{j=1}^m\left(a_i+b_j\right)^k\\ &={1\over nm}\sum_{i=…
思路 超级麻烦... 写了一堆最后常数太大T飞了... 真的难受 发现solve函数可以不用把下一层复制上来,直接传指针就可以,下次再说写不写叭 思路 \[ ans_k=\sum_{i=1}^n\sum_{j=1}^m (a_i+b_j)^k \] 二项式定理拆一下式子 \[ \begin{align}ans_k=&\sum_{i=1}^n\sum_{j=1}^m (a_i+b_j)^k\\=&\sum_{i=1}^n\sum_{j=1}^m\sum_{t=0}^k\left(\begin…
传送门 这是两个月之前写的题,但没写博客.现在回过头来看一下发现又不会了-- 还是要写博客加深记忆. 思路 显然期望可以算出总数再乘上\((nm)^{-1}\). 那么有 \[ \begin{align*} ans_t&=\sum_{i=1}^n \sum_{j=1}^m (a_i+b_j)^t\\ &=\sum_{i=1}^n \sum_{j=1}^m \sum_{k=0}^t {t\choose k} a_i^k b_j^{t-k}\\ &=t!\sum_{k=0}^t (\s…
题目分析 题目要求的是: \[ \sum_{i=1}^n\sum_{j=1}^m(a_i+b_j)^x(x\in [1,T]) \] 利用二项式定理化式子, \[ \begin{aligned} &\sum_{i=1}^n\sum_{j=1}^m(a_i+b_j)^x\\ =&\sum_{i=1}^n\sum_{j=1}^m\sum_{k=0}^x\binom{x}{k}a_i^kb_j^{x-k}\\ =&x!\sum_{i=1}^n\sum_{j=1}^m\sum_{k=0}^…
[题解]P5589 小猪佩奇玩游戏(期望) 假设一个点有\(x\)个点(包括自己)可以到达他,他就对答案有\(1/x\)的贡献.这是因为这个点必须被删掉而通过删掉这个点本身删掉这个点的概率是\(1/x\),所以对期望的贡献是\(1\times 1/x\). 如何算\(x\).\(x\)是唯一分解之后所有的指数的\(gcd\)的约数个数. 此时就有60分了. 考虑对于\(\le \sqrt n\)的数暴力处理,对于\(> \sqrt n\)的数,由于这些数不会有出度,所以只要算他们的入度.众所周知…
邱老师玩游戏 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1136 Description 邱老师最近在玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中邱老师允许攻克M个城堡并获得里面的宝物. 但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先攻克其他某一个特定的城堡.你能帮邱老师算出要获得尽量多的宝物应该攻克哪M个城堡吗? Inp…
[洛谷5月月赛]玩游戏(NTT,生成函数) 题面 Luogu 题解 看一下要求的是什么东西 \((a_x+b_y)^i\)的期望.期望显然是所有答案和的平均数. 所以求出所有的答案就在乘一个逆元就好了. 现在考虑怎么算上面那个东西. 对于单个的计算,我们可以用二项式定理直接展开 得到 \[\begin{aligned}\sum(a+b)^k&=\sum\sum_{i=0}^kC_k^ia^ib^{k-i}\\&=\sum_{i=0}^kC_k^i(\sum a^i)(\sum b^{k-i…