本文简明讲述GMM-HMM在语音识别上的原理,建模和測试过程.这篇blog仅仅回答三个问题: 1. 什么是Hidden Markov Model? HMM要解决的三个问题: 1) Likelihood 2) Decoding 3) Training 2. GMM是神马?如何用GMM求某一音素(phoneme)的概率? 3. GMM+HMM大法解决语音识别 3.1 识别 3.2 训练 3.2.1 Training the params of GMM 3.2.2 Training the param…
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:侯艺馨 前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neural Network)引入到声学模型建模中,将FFDNN的输出层概率用于替换之前GMM-HMM中使用GMM计算的输出概率,引领了DNN-HMM混合系统的风潮.长短时记忆网络(LSTM,LongShort Term Memory)…
前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neural Network)引入到声学模型建模中,将FFDNN的输出层概率用于替换之前GMM-HMM中使用GMM计算的输出概率,引领了DNN-HMM混合系统的风潮.长短时记忆网络(LSTM,LongShort Term Memory)可以说是目前语音识别应用最广泛的一种结构,这种网络能够对语音的长时相关性…
基于OpenSeq2Seq的NLP与语音识别混合精度训练 Mixed Precision Training for NLP and Speech Recognition with OpenSeq2Seq 迄今为止,神经网络的成功建立在更大的数据集.更好的理论模型和缩短的训练时间上.特别是顺序模型,可以从中受益更多.为此,我们创建了OpenSeq2Seq--一个开源的.基于TensorFlow的工具包.OpenSeq2Seq支持一系列现成的模型,其特点是多GPU和混合精度训练,与其他开源框架相比,…
16.(2022)Chip-BCKG-基于临床指南的中国乳腺癌知识图谱的构建与应用 论文标题: Construction and Application of Chinese Breast Cancer Knowledge Graph Based on Clinical Guidelines 论文会议: Chip 16.(2022)Chip-BCKG-基于临床指南的中国乳腺癌知识图谱的构建与应用 摘要 1.引言 2.相关工作 2.1 知识提取 2.2 医学KG 3.乳腺癌知识图谱构建 3.1 本…