关于 k 进制线性基】的更多相关文章

本质还是高斯消元,使其成为上三角矩阵.但是 \(k\) 不一定是质数. 但我们不需要保证已有数字不改变,只要维护的是一个上三角矩阵就行.所以我们可以利用更相减损让其中一个向量的最高位 \(= 0\) .然后插入即可.正确性的证明同二进制线性基. 然后来到了查询环节.在二进制下,异或两次就等于没异或,所以容易判断.但是在这里,一个数的异或次数是不固定的.更糟的是,很有可能有多种方式取得最大值. 举个例子.当前 \(k = 8\) ,最高位 \(= 6\) ,初始数字 \(x = 0\) .显然异或…
C - Pashmak and Buses Codeforces Round #261 (Div. 2) C. Pashmak and Buses time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Recently Pashmak has been employed in a transportation company. The…
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q.将S从右…
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3…
前言: $FWT$是用来处理位运算(异或.与.或)卷积的一种变换.位运算卷积是什么?形如$f[i]=\sum\limits_{j\oplus k==i}^{ }g[j]*h[k]$的卷积形式(其中$\oplus$为位运算)就是位运算卷积.如果暴力枚举的话,时间复杂度是$O(n^2)$,但运用$FWT$来解决就可达到$O(nlog_{n})$的时间复杂度.$FST$则是借助$FWT$来进行的对子集卷积的优化,相当于$FWT$的一个应用. FWT 与卷积 对于与运算,有一个结论:$(i\&j)\&am…
https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P1066: 首先普及一下知识:一个2^k进制n位数转换成2进制数时最多有n*k位:一个n进制数的每位数字属于集合{0,1,……,n-1}. 这样我们就知道给出w.k后r的位数最多为wei=w/k向上取整,但要注意,如果w%k有余,则r在最高位上不能把集合{0,1,……,n-1}的数都取一遍. 又知道r的位…
题目描述 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 例: 1010230 是有效的7位数 1000198 无效 0001235 不是7位数, 而是4位数. 给定两个数N和K, 要求计算包含N位数字的有效K-进制数的总数. 假设2 <= K <= 10; 2 <= N; 4 <= N+K <= 18. 输入 两个十进制整数N和K 输出 十进制表示…
(不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include<cstring> #include<cstdio> using namespace std; ][][],tot[],mmax; int pow(int a,int b) { ,with=a; while(b) { ) ans*=with; with*=with; b>>=;…
K进制 Description 给定一个正整数n,请你判断在哪些进制下n的表示恰好有2位是1,其余位都是0. Input 输入第一行为整数TT,表示有TT组数据(1 \le T \le 50)(1≤T≤50) 每组数据包含一个整数n(3 \le n \le 1000000000)n(3≤n≤1000000000) 输入保证一定有解 Output 对于每组数据,从小到大输出每一个符合要求的进制,每个一行 Sample Input 1 1 10 Sample Output 1 2 3 9看着题解做的…
1649:[例 2]2^k 进制数 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 原题来自:NOIP 2006 提高组 设 r 是个 2k 进制数,并满足以下条件: 1.r 至少是个 2 位的 2k 进制数. 2.作为 2k 进制数,除最后一位外,r 的每一位严格小于它右边相邻的那一位. 3.将 r 转换为 2 进制数 q 后,q 的总位数不超过 w. 在这里,正整数 k 和 w 是事先给定的. 问:满足上述条件的不同的 r 共多少个? [输入] 输入…
题目链接 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k〈w≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个"0"或"1"组成),S对应于上述条件(3)中的q…
这是一篇用来卖萌的文章QAQ 考虑以下三类卷积 \(C_k = \sum \limits_{i \;or\;j = k} A_i * B_j\) \(C_k = \sum \limits_{i\;and\;j = k} A_i * B_j\) \(C_k = \sum \limits_{i\;xor\;j = k}A_i * B_j\) 由于前两种可以用FMT(高维前缀和)解决,那我们就谈谈第三种吧 下文中的\(n\)都是形如\(2^i - 1\)的数 下标的开与闭是根据好不好写来定的,但是还是…
正解:数论 解题报告: 行吧那就让我一点点推出来趴QAQ…
链接:https://www.nowcoder.com/acm/contest/121/F来源:牛客网 题目描述 WWX的女朋友送给了他一个礼物,可是礼物却被一把K进制密码锁锁住了.在礼物盒上还有一张出自她的女朋友的纸条:”嘿嘿~~密码我会在520那天告诉你”.但是WWX想提前知道礼物是什么,所以找到了这把锁的制造者Ddjing.Ddjing告诉他,我只知道这把锁的加密原理:在锁的表面会定期显示两个十进制数x和n,如果你能在有限时间算出来将n个x相乘的结果,其用k进制表示时的长度就是这把锁的密码…
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3…
问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer number you will have to find out how many trailing zeros will be there in its factorial in a given number system and also you will have to find how many di…
题目大意 求n!在k进制下的位数 2≤N≤2^31, 2≤K≤200 分析 作为数学没学好的傻嗨,我们先回顾一下log函数 \(\log_a(b)=\frac 1 {log_b(a)}\) \(\log_a (x^k)=k*\log_a x\) \(\log_a(bc)=log_a(b)+log_a(c)\) 嗯嗯,呵呵 我们要求的是\(log_k(n!)\) n大处理不了 用斯特林公式 \(n! \approx \sqrt{2\pi n} * (\frac n e)^n\) \(\log_k(…
华电北风吹 天津大学认知计算与应用重点实验室 日期:2015/8/24 先说一下结论 有k进制数abcd,有abcd%(k−1)=(a+b+c+d)%(k−1) 这是由于kn=((k−1)+1)n=∑ni=0Cin(k−1)i 因此kn 对(k-1)取余的话为1 比如10进制1425%9=3,(1+4+2+5)=12%9=3. 这个性质眼下我在两个地方见到了 (一)算法导论第11章讲散列表的时候,除法散列的时候 h(k)=kmod m 对于m的选取,若m取2p或者2p−1 均是不合适的选择,前者…
有两个正整数,求N!的K进制的位数 题目链接:action=showproblem&problemid=3503">http://sdutacm.org/sdutoj/problem.php? action=showproblem&problemid=3503 #include <bits/stdc++.h> using namespace std; const double eps = 1e-6; const double PI = acos(-1.0); c…
题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q.将S从右起划分为…
1116 K进制下的大数  基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 有一个字符串S,记录了一个大数,但不知这个大数是多少进制的,只知道这个数在K进制下是K - 1的倍数.现在由你来求出这个最小的进制K. 例如:给出的数是A1A,有A则最少也是11进制,然后发现A1A在22进制下等于4872,4872 mod 21 = 0,并且22是最小的,因此输出k = 22(大数的表示中A对应10,Z对应35). Input 输入大数对应的字符串S.…
[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q…
题目大意: 给一个\(n*n\)的矩阵,对于所有排列p,记录\(a[i][p[i]]\)的k进制下不进位加法的结果,问所有被记录过的数. \(n<=50,p=2.3,0<=a[i][j]<p^7\) 题解: 又是排列,不妨考虑行列式: \(|A|=\sum_{p是排列}(-1)^{p的逆序对个数} \prod A[i][p[i]]\) 这里的A是一个集合幂级数,×定义为k进制不进位加法卷积. 假设我们直接做高斯消元求行列式,发现由于\((-1)^?\)次方,可能导致本来≠0而加起来为0,…
求x!在k进制下后缀和的个数 20分:     求十进制下的x!后缀和的个数 40分: 高精求阶乘,直接模拟过程 (我不管反正我不打,本蒟蒻最讨厌高精了) 60分     利用一个定理(网上有求x!在10进制.2进制下后缀和的个数的题,原理一样) 证明:(转自http://www.cnblogs.com/dolphin0520/) 求n的阶乘某个因子a的个数,如果n比较小,可以直接算出来,但是如果n很大,此时n!超出了数据的表示范围,这种直接求的方法肯定行不通.其实n!可以表示成统一的方式.  …
我们知道任意进制转换为十进制,都是乘以基数的多少次方,然后相加: 十进制转换为任意进制,都是除以基数,然后倒着取余数: 所以这里是用十进制数中转,实现任意进制数的转换 #include<iostream> #include<algorithm> #include<math.h> #include<stack> #define ll long long #define M 0x3f3f3f3f3f using namespace std; ll change1…
题面 传送门:https://www.luogu.org/problemnew/show/P1066 Solution 这是一道神奇的题目,我们有两种方法来处理这个问题,一种是DP,一种是组合数. 这题需要高精度,以下省略此声明 . 如果你对数学不感兴趣/喜欢写DP/(不想虐待自己),这里是DP做法. 首先,我们可以发现,这个数最多有w/k位(向上取整),如下图所示: 那么,我们就可以以这个特性做DP啦. 设f[i][j]表示枚举到第i位(指2^k进制下的),最后一位数为j. f[i][j] =…
[codevs1157]2k进制数 试题描述 设r是个2k 进制数,并满足以下条件: (1)r至少是个2位的2k 进制数. (2)作为2k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<w≤30000)是事先给定的.问:满足上述条件的不同的r共有多少个?我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个"0"或"1"组成),S对应…
[本文链接] http://www.cnblogs.com/hellogiser/p/16-to-3-or-k.html [题目] 写代码把16进制表示的串转换为3进制表示的串.例如x=”5”,则返回:”12”:又例如:x=”F”,则返回”120” [代码]  C++ Code  1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859…
设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个"0"或"1"组成),S对应于上述条件(3)中的q…
解题关键:$A\% (k - 1) = (A[0] + A[1]*k + A[2]*{k^2} + ...A[n]*{k^n})\% (k - 1) = (A[0] + A[1] + ...A[n])\% (k - 1)$ 然后枚举即可,注意上下界.需要注意的坑,K要>Max(A[0]……A[n]).因为2进制中,不会出现3 #include<bits/stdc++.h> using namespace std; typedef long long ll; int main(){ str…