[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys · July 2017) [论文作者] SHUAI ZHANG, University of New South WalesLINA YAO, University of New South WalesAIXIN SUN, Nanyang Technological UniversityYI TAY…
Robot Framework自动化_环境搭建以及第一个脚本 培训老师:肖能尤 2016/06/07 课程目的 一.Robot framework 环境搭建以及第一个脚本 课程内容 1    安装前准备工作 搭建环境所需要的安装文件已经下载好,从SVN上获取即可,解压,如下 2   Robotframework环境搭建 2.1  安装Python 官网下载地址: http://www.python.org/getit/ 2.2  安装setuptools-15.1 2.3  安装pip 2.4 …
           升鲜宝V2.0_生鲜配送行业,对生鲜配送系统开发与实施的深度对比与思考_升鲜宝生鲜配送系统_15382353715_余东升 笔者从事生鲜配送软件开发接近10年,前前后后研究了很多生鲜配送系统,尤其是这几年,随着生鲜配送企业的一把手,慢慢地对信息化系统的要求越来越高.同时给予了信息化系统过高的期望.由于资本的催化,使开发生鲜供应链系统的人越来越多,但是至今市面还没有一个软件用的比较理想的. 生鲜配送行业,是一个劳动密集型的行业,文化水平与电脑操作水平相对来说弱一点,而且这个行…
论文信息 论文标题:Data Augmentation for Deep Graph Learning: A Survey论文作者:Kaize Ding, Zhe Xu, Hanghang Tong, Huan Liu论文来源:2022, arXiv论文地址:download 1 介绍 本文主要总结图数据增强,并对该领域的代表性方法做出归类分析. DGL 存在的两个问题: 次优图问题:图中包含不确定.冗余.错误和缺失的节点特征或图结构边. 有限标签问题:标签数据成本高,目前大部分 DGL 方法是…
网上已有很多关于MOT的文章,此系列仅为个人阅读随笔,便于初学者的共同成长.若希望详细了解,建议阅读原文. 本文是tracking by detection 方法进行多目标跟踪的文章,在SORT的基础上进行了改进(SORT见前一篇随笔). 论文地址:https://arxiv.org/pdf/1703.07402.pdf 代码地址:https://github.com/nwojke/deep_sort 文章概述 本方法最大的特点是加入了appearance信息来提高之前SORT的性能,用cosi…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(regularization).另一个解决高方差的方法就是准备更多的数据,这也是非常可靠的方法. 正则化的原理 正则化公式简析 L1范数:向量各个元素绝对值之和 L2范数:向量各个元素的平方求和然后求平方根 Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方 L∞范数:向量各个元素求绝对值,最大那…
网上已有很多关于MOT的文章,此系列仅为个人阅读随笔,便于初学者的共同成长.若希望详细了解,建议阅读原文. 本文是tracking by detection 方法进行多目标跟踪的文章,最大的特点是使用了state-of-the-art的detection和feature来代替以往的方法,使用简单的匹配方法就能达到最好的水平. 论文地址:https://arxiv.org/pdf/1610.06136.pdf Detection 以及  Appearance特征地址(Google Drive 需F…
网上已有很多关于MOT的文章,此系列仅为个人阅读随笔,便于初学者的共同成长.若希望详细了解,建议阅读原文. 本文是使用 tracking by detection 方法进行多目标跟踪的文章,是后续deep sort的基础(Deep SORT见后一篇随笔). 论文地址:http://arxiv.org/pdf/1602.00763.pdf 代码地址:https://github.com/abewley/sort 文章概述 本方法最大的特点是高效地实现了基于Faster-RCNN的detection…
Deepmath Deepmath项目旨在改进使用深度学习和其他机器学习技术的自动化定理证明. Deepmath是Google研究与几所大学之间的合作. 免责声明: 该存储库中的源代码不是Google的官方产品,而是与外部研究团队的研究合作. 现在,存储库仅包含HOL Light内核的C ++实现,我们早期已经发布了这些实现来促进现有协作.更多代码即将发布,包括神经网络模型. https://github.com/tensorflow/deepmath Deepmath The Deepmath…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 训练/开发/测试集 对于一个数据集而言,可以将一个数据集分为三个部分,一部分作为训练集,一部分作为简单交叉验证集(dev)有时候也成为验证集,最后一部分作为测试集(test).接下来我们开始对训练集执行训练算法,通过验证集或简单交叉验证集选择最好的模型.经过验证我们选择最终的模型,然后就可以在测试集上进行评估了.在机器学习的小数据量时代常见的做法是将所有数据三七分,就是人们常说的70%训练集集,30%测试集,如果设置有验证集,我们可…