量化模型多数是基于统计的,因此,统计运算库应该是必备的.在Matlab.R中包含了大量的统计和概率运算,可以说拿来就用,非常方便,相比之下,F#的资源就很少了,这里给大家提供几个链接,可以解决一部分问题. 第一个是:Math.NET(http://www.mathdotnet.com/),这一个开源的软件包,主要实现一些矩阵.统计运算. 第二个是:http://accord-framework.net/,这个也是开源的,不光有统计,还包括机器学习.神经元网络.支持向量机.HMM等人工智能的算法.…
自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 CNN 网络,如 VGG.GoogLeNet.ResNet.DenseNet 等.由于神经网络的性质,为了获得更好的性能,网络层数不断增加,从 7 层 AlexNet 到 16 层 VGG,再从 16 层 VGG 到 GoogLeNet 的 22 层,再到 152 层 ResNet,更有上千层的 R…
自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 CNN 网络,如 VGG.GoogLeNet.ResNet.DenseNet 等.由于神经网络的性质,为了获得更好的性能,网络层数不断增加,从 7 层 AlexNet 到 16 层 VGG,再从 16 层 VGG 到 GoogLeNet 的 22 层,再到 152 层 ResNet,更有上千层的 R…
MobileNet v2 论文链接:https://arxiv.org/abs/1801.04381 MobileNet v2是对MobileNet v1的改进,也是一个轻量化模型. 关于MobileNet v1的介绍,请看这篇:对MobileNet网络结构的解读 MobileNet v1遗留下的问题 1)结构问题 MobileNet v1的结构非常简单,是一个直筒结构,这种结构的性价比其实不高,后续一系列的ResNet,DenseNet等结构已经证明通过复用图像特征,使用Concat/Eltw…
0. 引子 在训练轻量化模型时,经常发生的情况就是,明明 GPU 很闲,可速度就是上不去,用了多张卡并行也没有太大改善. 如果什么优化都不做,仅仅是使用nn.DataParallel这个模块,那么实测大概只能实现一点几倍的加速(按每秒处理的总图片数计算),不管用多少张卡.因为卡越多,数据传输的开销就越大,副作用就越大. 为了提高GPU服务器的资源利用率,尝试了一些加速的手段. 基于Pytorch1.6.0版本实现,官方支持amp功能,不再需要外部apex库: 此外比较重要的库是Dali. 梳理了…
CNN结构演变总结(一)经典模型 导言: 上一篇介绍了经典模型中的结构演变,介绍了设计原理,作用,效果等.在本文,将对轻量化模型进行总结分析. 轻量化模型主要围绕减少计算量,减少参数,降低实际运行时间,简化底层实现方式等这几个方面,提出了深度可分离卷积,分组卷积,可调超参数降低空间分辨率和减少通道数,新的激活函数等方法,并针对一些现有的结构的实际运行时间作了分析,提出了一些结构设计原则,并根据这些原则来设计重新设计原结构. 注:除了以上这种直接设计轻量的.小型的网络结构的方式外,还包括使用知识蒸…
​  前言  由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络 (CNN) 很困难.特征图中的冗余是那些成功的 CNN 的一个重要特征,但在神经架构设计中很少被研究. 论文提出了一种新颖的 Ghost 模块,可以从廉价操作中生成更多的特征图.提出的 Ghost 模块可以作为即插即用的组件来升级现有的卷积神经网络.堆叠Ghost Module建立了轻量级的 GhostNet. GhostNet 可以实现比 MobileNetV3 更高的识别性能(例如 75.7% 的 top-1 准确率),并…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
Java解决可见性和有序性问题:Java内存模型 什么是 Java 内存模型? Java 内存模型是个很复杂的规范,可以从不同的视角来解读,站在我们这些程序员的视角,本质上可以理解为, Java 内存模型规范了 JVM 如何提供按需禁用缓存和编译优化的方法.具体来说,这些方法包括 volatile.synchronized 和 final 三个关键字,以及六项 Happens-Before 规则. Happens-Before 规则:前一个操作的结果对后续操作可见. 前面一个操作的结果对后续操作…