TensorFlow中卷积】的更多相关文章

声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN的存在是为了解决两个主要问题: 1. 权值太多.这个随便一篇博文都能解释 2. 语义理解.全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图像内容的空间结构.换句话说,打乱图像像素的输入顺序,结果不变. 然后,CNN中的卷积核的一个重要特点是它是需要网络自己来学习的.这一点很简…
CNN中的卷积核及TensorFlow中卷积的各种实现 声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了“应该”二字 首先,通俗说一下,CNN的存在是为了解决两个主要问题: 1. 权值太多.这个随便一篇博文都能解释 2. 语义理解.全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图像内容的空间结构.换句话说,打乱图像像素的输入顺序,结果不变. 然后,CNN中的卷积核的一个…
卷积和转置卷积,都涉及到padding, 那么添加padding 的具体方式,就会影响到计算结果,所以搞清除tensorflow中卷积和转置卷积的具体实现有助于模型的灵活部署应用. 一.卷积 举例说明: X:  1        2        3        4          5 6        7        8        9         10 11      12      13       14        15 16      17       18      1…
根据tensorflow中的Conv2D函数,先定义几个基本符号: 输入矩阵W*W,这里只考虑输入宽高相等的情况,如果不相等,推导方法一样 filter矩阵F*F,卷积核 stride值S,步长 输出宽高为new_height,new_width 在tensorflow中padding的方式有两种,一种是valid,一种是same padding='valid' new_height = new_width = (W - F + 1) / S  (结果向上取整) 也就是说,Conv2D的vali…
转载请注明出处:http://www.cnblogs.com/willnote/p/6746668.html 图示说明 用一个3x3的网格在一个28x28的图像上做切片并移动 移动到边缘上的时候,如果不超出边缘,3x3的中心就到不了边界 因此得到的内容就会缺乏边界的一圈像素点,只能得到26x26的结果 而可以越过边界的情况下,就可以让3x3的中心到达边界的像素点 超出部分的矩阵补零 代码说明 根据tensorflow中的conv2d函数,我们先定义几个基本符号 输入矩阵 W×W,这里只考虑输入宽…
TensorFlow 中卷积操作和池化操作中都有一个参数 padding,其可选值有 ['VALID', 'SAME']. 在 TensorFlow 文档中只是给出了输出张量的维度计算方式,但是并没有说明当 padding='SAME' 时,如何进行补零操作. 其给出的输出张量的维度计算公式: VALID 方式: output_shape[i] = ceil((input_shape[i] - (filter_shape[i] - 1) * dilation_rate[i]) / strides…
原文链接: https://zhuanlan.zhihu.com/p/29119239 卷积层尺寸的计算原理 输入矩阵格式:四个维度,依次为:样本数.图像高度.图像宽度.图像通道数 输出矩阵格式:与输出矩阵的维度顺序和含义相同,但是后三个维度(图像高度.图像宽度.图像通道数)的尺寸发生变化. 权重矩阵(卷积核)格式:同样是四个维度,但维度的含义与上面两者都不同,为:卷积核高度.卷积核宽度.输入通道数.输出通道数(卷积核个数) 输入矩阵.权重矩阵.输出矩阵这三者之间的相互决定关系 卷积核的输入通道…
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型. 本文提出的模型在一系列文本分类任务(如情绪分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准. 我假设你已经熟悉了应用于NLP的卷积神经网络的基础知识. 如果没有,我建议先阅读NLP的理解卷积神经网络,以获…
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用于信道均衡.图像恢复.语音识别.地震学.无损探伤等未知输入估计和过程辨识方面的问题. 在神经网络的研究中,反卷积更多的是充当可视化的作用,对于一个复杂的深度卷积网络,通过每层若干个卷积核的变换,我们无法知道每个卷积核关注的是什么,变换后的特征是什么样子.通过反卷积的还原,可以对这些问题有个清晰的可视…
前言 最近尝试看TensorFlow中Slim模块的代码,看的比较郁闷,所以试着写点小的代码,动手验证相关的操作,以增加直观性. 卷积函数 slim模块的conv2d函数,是二维卷积接口,顺着源代码可以看到最终调的TensorFlow接口是convolution,这个地方就进入C++层面了,暂时不涉及.先来看看这个convolution函数,官方定义是这样的: tf.nn.convolution( input, filter, padding, strides=None, dilation_ra…
TensorFlow 中的卷积网络 是时候看一下 TensorFlow 中的卷积神经网络的例子了. 网络的结构跟经典的 CNNs 结构一样,是卷积层,最大池化层和全链接层的混合. 这里你看到的代码与你在 TensorFlow 深度神经网络的代码类似,我们按 CNN 重新组织了结构. 如那一节一样,这里你将会学习如何分解一行一行的代码.你还可以下载代码自己运行. 感谢 Aymeric Damien 提供了这节课的原始 TensorFlow 模型. 现在开看下! 数据集 你从之前的课程中见过这节课的…
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflownews.com #!/usr/bin/python # -*- coding: UTF-8 -*- import matplotlib.pyplot as plt import tensorflow as tf from PIL import Image import numpy img = Ima…
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型. 本文提出的模型在一系列文本分类任务(如情绪分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准. 我假设你已经熟悉了应用于NLP的卷积神经网络的基础知识. 如果没有,我建议先阅读NLP的理解卷积神经网络,以获…
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import tensorflow as tf # 用 tf.session.run() 里 feed_dict 参数设置占位 tensor, 如果传入 feed_dict的数据与 tensor 类型不符,就无法被正确处理 x = tf.placeholder(tf.string) y = tf.placehol…
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNIST手写数字库对CNN(卷积神经网络)进行训练,准确度达到98%以上时,再准备独家手写数字10个.画图软件编辑的数字10个共计20个,让训练好的CNN进行识别,考察其识别准确度. 调试代码: 坑1:ModuleNotFoundError: No module named 'google' 解决:pi…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在前一篇文章中,我们梳理了TensorFlow中各种异构Device的添加和注册机制,通过使用预先定义好的宏,各种自定义好的Device能够将自己注册到全局表中.TensorFlow期望通过这种模式,能够让Device的添加和注册于系统本身更好的解耦,从而体现了较好的模块化特性.在这篇文章中,我们选择直接去窥探TensorFlow底层架构较为复杂的一个部分——StreamEx…
一 初始化RNN 上一节中介绍了 通过cell类构建RNN的函数,其中有一个参数initial_state,即cell初始状态参数,TensorFlow中封装了对其初始化的方法. 1.初始化为0 对于正向或反向,第一个cell传入时没有之前的序列输出值,所以需要对其进行初始化.一般来讲,不用刻意取指定,系统会默认初始化为0,当然也可以手动指定其初始化为0. initial_state = lstm_cell.zero_state(batch_size, dtype=tf.float32) 2.初…
在深度学习章节里,已经介绍了批量归一化的概念,详情请点击这里:第九节,改善深层神经网络:超参数调试.正则化以优化(下) 神经网络在进行训练时,主要是用来学习数据的分布规律,如果数据的训练部分和测试部分分布不一样,那么网络的泛化能力会变得非常差.而且对于训练的数据,每批分布也是不一样的,那么网络在迭代的过程中也要学习和适应不同的分布.这会大大降低网络的训练速度.此外,数据的分布对于激活函数来说也非常重要,有时数据分布范围太大不利于利用激活函数的非线性特性,比如激活函使用Sigmoid函数时,会导致…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷积层,在最近提出的卷积神经网络中越来越常见了,特别是在对抗生成神经网络(GAN)中,生成器网络中上采样部分就出现了转置卷积层,用于恢复减少的维数.那么,转置卷积层和正卷积层的关系和区别是什么呢,转置卷积层实现过程又是什么样的呢,笔者根据最近的预研项目总结出本文. 1. 卷积层和全连接层 在CNN提出…
在tensorflow中的卷积和池化层(一)和各种卷积类型Convolution这两篇博客中,主要讲解了卷积神经网络的核心层,同时也结合当下流行的Caffe和tf框架做了介绍,本篇博客将接着tensorflow中的卷积和池化层(一)的内容,继续介绍tf框架中卷积神经网络CNN的使用. 因此,接下来将介绍CNN的入门级教程cifar10\100项目.cifar10\100 数据集是由Alex Krizhevsky.Vinod Nair和Geoffrey Hinton收集的,这两个数据集都是从800…
What: 在Tensorflow中, 为了区别不同的变量(例如TensorBoard显示中), 会需要命名空间对不同的变量进行命名. 其中常用的两个函数为: tf.variable_scope, tf.name_scope. Why: 在自己的编写代码过程中, 用如下代码进行变量生成并进行卷积操作: import tensorflow as tf import numpy as np def my_conv2d(data, name, kh, kw, sh, sw, n_out): n_in…
tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35   http://blog.csdn.net/guvcolie/article/details/77686555 最近需要使用slim模块,先把slim的github readme放在这里,后续会一点一点翻译 github:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim TensorFlow-Sli…
本文参考Yann LeCun的LeNet5经典架构,稍加ps得到下面适用于本手写识别的cnn结构,构造一个两层卷积神经网络,神经网络的结构如下图所示: 输入-卷积-pooling-卷积-pooling-全连接层-Dropout-Softmax输出 第一层卷积利用5*5的patch,32个卷积核,可以计算出32个特征.然后进行maxpooling.第二层卷积利用5*5的patch,64个卷积核,可以计算出64个特征.然后进行max pooling.卷积核的个数是我们自己设定,可以增加卷积核数目提高…
1 卷积神经网络简介 在介绍卷积神经网络(CNN)之前,我们需要了解全连接神经网络与卷积神经网络的区别,下面先看一下两者的结构,如下所示: 图1 全连接神经网络与卷积神经网络结构 虽然上图中显示的全连接神经网络结构和卷积神经网络的结构直观上差异比较大,但实际上它们的整体架构是非常相似的.从上图中可以看出,卷积神经网络也是通过一层一层的节点组织起来的.和全连接神经网络一样,卷积神经网络中的每一个节点都是一个神经元.在全连接神经网络中,每相邻两层之间的节点都有边相连,于是一般会将每一层全连接层中的节…
Tensorflow中的图(tf.Graph)和会话(tf.Session) Tensorflow编程系统 Tensorflow工具或者说深度学习本身就是一个连贯紧密的系统.一般的系统是一个自治独立的.能实现复杂功能的整体.系统的主要任务是对输入进行处理,以得到想要的输出结果.我们之前见过的很多系统都是线性的,就像汽车生产工厂的流水线一样,输入->系统处理->输出.系统内部由很多单一的基本部件构成,这些单一部件具有特定的功能,且需要稳定的特性:系统设计者通过特殊的连接方式,让这些简单部件进行连…
用 TensorFlow 做卷积 让我们用所学知识在 TensorFlow 里构建真的 CNNs.在下面的练习中,你需要设定卷积核滤波器(filters)的维度,weight,bias.这在很大程度上来说是 TensorFlow CNNs 最难的部分.一旦你知道如何设置这些属性的大小,应用 CNNs 会很方便. 回顾 你应该看一下二维卷积的文档.文档大部分都很清楚,padding这一部分,可能会有点难以理解.padding 会根据你给出的 'VALID' 或者 'SAME' 参数,做相应改变.…
import tensorflow as tf #Fetch概念 在session中同时运行多个op input1=tf.constant(3.0) #constant()是常量不用进行init初始化 input2=tf.constant(2.0) input3=tf.constant(5.0) add=tf.add(input2, input3) mul=tf.multiply(input1,add) with tf.Session() as sess: result=sess.run([mu…
由于tensorflow版本迭代较快且不同版本的接口会有差距,我这里使用的是1.14.0的版本 安装指定版本的方法:pip install tensorflow==1.14.0      如果你之前安装高版本(比如2.1.0),它会自动把高版本卸载掉 import tensorflow as tf m1=tf.constant([[3,3]]) #创建一个常量op m2=tf.constant([[2],[3]]) product=tf.matmul(m1,m2) #创建一个矩阵乘法op,把m1…
TensorFlow中的语义分割套件 描述 该存储库用作语义细分套件.目标是轻松实现,训练和测试新的语义细分模型!完成以下内容: 训练和测试方式 资料扩充 几种最先进的模型.轻松随插即用 能够使用任何数据集 评估包括准确性,召回率,f1得分,平均准确性,每类准确性和平均IoU 绘制损失函数和准确性 欢迎提出任何改进此存储库的建议,包括希望看到的任何新细分模型. 也可以签出Transfer Learning Suite. 引用 如果发现此存储库有用,请考虑使用回购链接将其引用:) 前端 当前提供以…
Python中的list/tuple,numpy中的ndarrray与tensorflow中的tensor. 用python中list/tuple理解,仅仅是从内存角度理解一个序列数据,而非数学中标量,向量和张量. 从python内存角度理解,就是一个数值,长度为1,并且不是一个序列: 从numpy与tensorflow数学角度理解,就是一个标量,shape为(),其轴为0: [1,2,3,4,5,6] 从python内存角度理解,就是1*6或者长度为6的一个序列: 从numpy与tensorf…