6-Pandas之缺失值处理】的更多相关文章

python pandas判断缺失值一般采用 isnull(),然而生成的却是所有数据的true/false矩阵,对于庞大的数据dataframe,很难一眼看出来哪个数据缺失,一共有多少个缺失数据,缺失数据的位置. 首先对于存在缺失值的数据,如下所示 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10,6)) # Make a few areas have NaN values df.iloc[1…
参考这篇文章: https://blog.csdn.net/u012387178/article/details/52571725 python pandas判断缺失值一般采用 isnull(),然而生成的却是所有数据的true/false矩阵,对于庞大的数据dataframe,很难一眼看出来哪个数据缺失,一共有多少个缺失数据,缺失数据的位置. 比如: 0.520113 0.884000 1.260966 -0.236597 0.312972 -0.196281 -0.837552 NaN 0.…
Pandas使用这些函数处理缺失值: isnull和notnull:检测是否是空值,可用于df和series dropna:丢弃.删除缺失值 axis : 删除行还是列,{0 or 'index', 1 or 'columns'}, default 0 how : 如果等于any则任何值为空都删除,如果等于all则所有值都为空才删除 inplace : 如果为True则修改当前df,否则返回新的df fillna:填充空值 value:用于填充的值,可以是单个值,或者字典(key是列名,valu…
# 2.1处理缺失值,连续值用均值填充 continuous_fillna_number = [] for i in train_null_ix: if(i in continuous_ix): mean_v = df_train[i].mean() continuous_fillna_number.append(mean_v) df_train[i] = df_train[i].fillna(mean_v) np.save("continuous_fillna_number.npy"…
2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它首先比较吸引人的作用是汇总计算 (1)基本的数学统计计算这里的基本计算指的是sum.mean等操作,主要是基于Series(也可能是来自DataFrame)进行统计计算.举例如下: #统计计算 sum mean等 import numpy as np import pandas as pd df=p…
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser…
官方文档链接http://pandas.pydata.org/pandas-docs/stable/dsintro.html 数据结构介绍 我们将以一个快速的.非全面的pandas的基础数据结构概述来开始.应用在所有对象的数据类型.索引和轴标签/对齐等的基础操作.首先我们需要向你的命名空间引入numpy和pandas. In [1]: import numpy as np In [2]: import pandas as pd 有个宗旨需要牢记:数据对齐是内在的.标签和数据间的链接不会被轻易改变…
接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维…
说明:文章所有内容均截选自实验楼教程[Pandas 使用教程],想要查看教程完整内容,点击教程即可~ 前言: Pandas 是非常著名的开源数据处理工具,我们可以通过它对数据集进行快速读取.转换.过滤.分析等一系列操作.除此之外,Pandas 拥有强大的缺失数据处理与数据透视功能,可谓是数据预处理中的必备利器.文章带你学会 Pandas 中的一些常用的基本方法. 知识点: 数据读取与存储 Head & Tail 统计方法 计算方法 标签对齐 排序 数据文件: 学习本课程之前,请先打开在线环境终端…
#python中的pandas库主要有DataFrame和Series类(面向对象的的语言更愿意叫类) DataFrame也就是#数据框(主要是借鉴R里面的data.frame),Series也就是序列 ,pandas底层是c写的 性能很棒,有大神#做过测试 处理亿级别的数据没问题,起性能可以跟同等配置的sas媲美#DataFrame索引 df.loc是标签选取操作,df.iloc是位置切片操作print(df[['row_names','Rape']])df['行标签']df.loc[行标签,…
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser…
数据丢失(缺失)在现实生活中总是一个问题. 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题. 在这些领域,缺失值处理是使模型更加准确和有效的重点. 何时以及为什么数据丢失? 想象一下有一个产品的在线调查.很多时候,人们不会分享与他们有关的所有信息. 很少有人分享他们的经验,但不是他们使用产品多久; 很少有人分享使用产品的时间,经验,但不是他们的个人联系信息. 因此,以某种方式或其他方式,总会有一部分数据总是会丢失,这是非常常见的现象. 现在来看看如何处…
很久没用pandas,有些有点忘了,转载一个比较完整的利用pandas进行数据预处理的博文:https://blog.csdn.net/u014400239/article/details/70846634 引入包和加载数据 import pandas as pd import numpy as np train_df =pd.read_csv('../datas/train.csv') # train set test_df = pd.read_csv('../datas/test.csv')…
目录 一:pandas数据结构介绍   python是数据分析的主要工具,它包含的数据结构和数据处理工具的设计让python在数据分析领域变得十分快捷.它以NumPy为基础,并对于需要类似 for循环 的大量数据处理的问题有非常快捷的数组处理函数.   但是pandas最擅长的领域还是在处理表格型二维以上不同数据类型数据.   基本导入语法: import pandas as pd    pandas标记缺失值或NA值为NaN.   有关python语法,数据分析简介,ipython,jupyt…
import numpy as np import pandas as pd import matplotlib.pyplot as plt df1 = pd.DataFrame(np.arange(1000, 1100, 4).reshape(5,5), index=['a'+str(i) for i in range(5)], columns=['b'+str(j) for j in range(5)]) df1 .dataframe tbody tr th:only-of-type { v…
Numpy 的基本能力之一是快速对每个元素进行运算 Pandas 继承了Numpy的功能,也实现了一些高效技巧. 对于1元运算,(函数,三角函数)保留索引和列标签 对于2元运算,(加法,乘法),Pandas 会自动对齐索引进行计算. 通用函数:保留索引 对ser对象或 df对象使用Numpy通用函数,生成的结果是另一个保留索引的Pandas对象. 通用函数: 索引对齐 当Series 或 DataFram对象进行二元计算,会对齐俩个对象的索引 当处理不完整的额数据时,这一点非常方便 Series…
假期结束,你的状态有没有回归?那么,放空脑袋后,先来学习学习,欢迎大家继续关注腾讯云技术社区. 作者:赵成龙 这是一篇很难写的文章,因为我希望这篇文章能对大家有所帮助.我不会给大家介绍机器学习,数据挖掘的行业背景,也不会具体介绍逻辑回归,SVM,GBDT,神经网络等学习算法的理论依据和数学推导,本文更多的是在流程化上帮助大家快速的入门机器学习和数据建模. 本文主要分为四个部分(限于时间关系会分为上下两篇): 上篇: 准备篇,主要涉及环境搭建以及pandas基本知识. 应用篇,我会以kaggle上…
在进行数据分析之前,我们需要做的事情是对数据有初步的了解,比如对数据本身的敏感程度,通俗来说就是对数据的分布有大概的理解,此时我们需要工具进行数据的描述,观测数据的形状等:而后才是对数据进行建模分析,挖掘数据中隐藏的位置信息.怒气按在数据描述和简单分析方面做得比较好的是Pandas库.当然,它还需要结合Numpy.Scipy等科学计算相关库才能发挥功效. Pandas数据结构 在进行Pandas相关介绍时,我们首先需要知道的是Pandas的两个数据结构(即对象)Series和DataFrame,…
所属网站分类: 资源下载 > python电子书 作者:today 链接:http://www.pythonheidong.com/blog/article/448/ 来源:python黑洞网 内容简介 本书是对以数据深度需求为中心的科学.研究以及针对计算和统计方法的参考书.本书共五章,每章介绍一到两个Python数据科学中的重点工具包.首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境:第2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操…
有趣的事,Python永远不会缺席! 如需转发,请注明出处:小婷儿的python https://www.cnblogs.com/xxtalhr/p/11014882.html  jupyter 代码 原文件及数据集提取连接 链接:https://pan.baidu.com/s/1N8sm-qxnErgHCIbKqZTlVQ 提取码:z3jn 1  Pandas对象简介 1.1  Pandas的Series对象 1.1.1  创建Series对象 1.2  Pandas的DataFrame对象…
内容目录 1. 什么是缺失值 2. 丢弃缺失值 3. 填充缺失值 4. 替换缺失值 5. 使用其他对象填充 数据准备 import pandas as pd import numpy as np index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name") da…
缺失数据(missing data)大部分数据分析应用中非常常见.pd设计目标之一就是让缺失数据的处理任务尽量轻松. pd 使用浮点值NaN(Not a Number) 表示浮点和非浮点数组中的缺失数据.是一个被检测出来的标识 import pandas as pd import numpy as np string_data = pd.Series(['aardvark', 'artichoke', np.nan, 'avocado']) string_data string_data.isn…
1.检查缺失值 为了更容易地检测缺失值(以及跨越不同的数组dtype),Pandas提供了isnull()和notnull()函数,它们也是Series和DataFrame对象的方法 - 示例1 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df…
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print(df) print('################缺失值判断#########…
创建 DataFrame: df = pd.DataFrame(np.random.randint(0, 10, (2, 4)), columns=list('ABCD')) 0. 为 data frame 添加新的属性列 >> df['total'] = df['A'] + df['B'] + df['C'] + df['D'] # 等价于 df['total'] = df.A + df.B + df.C + df.D 1. 数据类型 df.values ⇒ 返回的是 numpy 下的多维数…
Pandas中的缺失值是指nan.None和NaT.如果需要把inf 和 -inf视为缺失值,需要设置 pandas的选项: pandas.options.mode.use_inf_as_na = True 注意,None和None是相等的,但是缺失值和其他任何值(包括缺失值)是不相等的. >>> None==None True >>> np.nan == np.nan False 一,检测缺失值 检测缺失值的函数是isna()和notna(),在DataFrame和S…
Abstract During the course fo doing data analysis and modeling, a significant amount of time is spend on data preparation: loading, cleaning, transforming, and rearrangin. 在整个数据分析建模过程中, 大量的时间(80%)的时间是用在了数据的预处理中, 如数据清洗, 加载, 标准化, 重塑等. Such tasks are of…
目录 1. 数据文件 2. 读数据 3. 查找数据 4. 替换数据 4.1 一对一替换 4.2 多对一替换 4.3 多对多替换 5. 插入数据 6. 删除数据 6.1 删除列 6.2 删除行 7. 处理缺失值 7.1 数据准备 7.2 查看缺失值 7.3 删除缺失值 7.4 缺失值的填充 8. 处理重复值 8.1 删除重复行 8.2 删除某一列中的重复值 8.3 获取唯一值 9 排序数据 9.1 用sort_values()函数排序数据 9.2 用rank()函数获取数据的排名 10 rank(…
获取文中的CSV文件用于代码编程以及文章首发地址,请点击下方超链接 获取CSV,用于编程调试请点这 在本文中,我们将使用Python的Pandas库逐步完成许多不同的数据清理任务.具体而言,我们将重点关注可能是最大的数据清理任务,即 缺少值. 缺失值的来源 在深入研究代码之前,了解丢失数据的来源很重要.这是数据丢失的一些典型原因: 用户忘记填写字段. 从旧版数据库手动传输时,数据丢失. 发生编程错误. 用户选择不填写字段. 其中一些来源只是简单的随机错误.在其他时候,可能会有更深层的原因导致数据…
原文链接:https://junjiecai.github.io/posts/2016/Oct/20/none_vs_nan/ 建议从这里下载这篇文章对应的.ipynb文件和相关资源.这样你就能在Jupyter中边阅读,边测试文中的代码. python原生的None和pandas, numpy中的numpy.NaN尽管在功能上都是用来标示空缺数据.但它们的行为在很多场景下确有一些相当大的差异.由于不熟悉这些差异,曾经给我的工作带来过不少麻烦. 特此整理了一份详细的实验,比较None和NaN在不同…