NumPy的Linalg线性代数库探究】的更多相关文章

1.矩阵的行列式 from numpy import * A=mat([[1,2,4,5,7],[9,12,11,8,2],[6,4,3,2,1],[9,1,3,4,5],[0,2,3,4,1]]) print('det(A):',linalg.det(A)) det(A): -812.0 2.矩阵的逆 A=mat([[1,2,4,5,7],[9,12,11,8,2],[6,4,3,2,1],[9,1,3,4,5],[0,2,3,4,1]]) invA=linalg.inv(A) print('…
NumPy和Pandas常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成C.C++.Fortran等语言编写的代码的工具. 首先要导入numpy库:import numpy as np A NumPy函数和属性: 类型…
NumPy的random子库 np.random.* np.random.rand() np.random.randn() np.random.randint() import numpy as np a=np.random.rand(,,) a Out[]: array([[[ 0.08662874, 0.82948848, 0.68358736, 0.85925231, 0.18250681], [ 0.62005734, 0.38014728, 0.85111772, 0.07739155…
NumPy的随机函数子库numpy.random 导入模块:import numpy as np 1.numpy.random.rand(d0,d1,...,dn) 生成一个shape为(d0,d1,..,dn)的n+1维数组,元素类型为浮点数,元素大小范围是[0,1),均匀分布,随机产生. 例:print(np.random.rand(2, 4, 3)) # 生成形状(2, 3, 4)的数组,元素范围[0,1) 输出: [[[0.08107628 0.04956067 0.83403251]…
导入 import breeze.linalg._ import breeze.numerics._ Spark Mllib底层的向量.矩阵运算使用了Breeze库,Breeze库提供了Vector/Matrix的实现以及相应计算的接口(Linalg).但是在MLlib里面同时也提供了Vector和Linalg等的实现.在使用Breeze库时,需要导入相关包: Import breeze.linalg._ Import breeze.numeric._ Breeze创建函数: 操作名称 Bree…
函数签名:def norm(x, ord=None, axis=None, keepdims=False) 其中ord参数表示求什么类型的范数,具体参见下表 下面是用代码对一个列表求上面的范数 import numpy as np x = [1,2,3,4] x1 = np.linalg.norm(x=x, ord=1) x2 = np.linalg.norm(x=x, ord=2) x3 = np.linalg.norm(x=x, ord=np.inf) print(x1) print(x2)…
Numpy 提供了线性代数库 linalg , 该库包含了线性代数所需的所有功能,可以看卡下面的说明: 函数 描述 dot 两个数组的点积, 即元素对应相乘 vdot 两个向量的点积 inner 两个数组的内积 matmul 两个数组的矩阵阵积 determinant 数组的行列式 solve 求解线性矩阵方程 inv 计算矩阵的乘法逆矩阵 numpy.dot() numpy.dot()对于两个一维的数组,计算的是这两个数组的对应下标元素的乘机和数学上称之为内积(:碎玉二维数数组,计算的是两个数…
特征值与特征向量 下面这部分内容摘自:强大的矩阵奇异值分解(SVD)及其应用 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征.先谈谈特征值分解吧: 如果说一个向量v是方阵A的特征向量,则可以表示成下面的形式: 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量.特征值分解是将一个矩阵分解成下面的形式: 其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对…
一.Numpy简介: Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象.对于数值运算来说这种结构显然比较浪费内存和CPU计算时间.此外Python还提供了一个array模块,array对象和列表不同,它直接保存数值,和C语言的一维数组比较类似.但是由于它不支持多维,也没有各种运算函数,因此也不适合做数值运算. NumPy提供了两种基本的对象:nda…
线性代数的矩阵乘法 线性代数(如矩阵乘法.矩阵分解.行列式以及其他方阵数学等)是任何数组库的重要组成部分.不想某些语言(如MATLAB), 通过*对两个二维数组相乘得到的是一个元素级的积,而不是一个矩阵点积.因此, Numpy提供了一个用于 矩阵乘法的dot函数(即是一个数字方法也是numpy命名空间中的一个函数) 一个二维数组跟一个大小合适的一维数组的矩阵点积运算之后将会得到一个一维数组: numpy.linalg中有一组标准的矩阵分解运算以及诸如求逆和行列式之类的东西.他们跟MATLAB和R…