FPGA与Deep Learning】的更多相关文章

你还没听过FPGA?那你一定是好久没有更新自己在IT领域的知识了. FPGA全称现场可编程门阵列(Field-Programmable Gate Array),最初作为专用集成电路领域中的一种半定制电路而出现的,具有一定的可编程性,可同时进行数据并行和任务并行计算,在处理特定应用时有更加明显的效率. 实际上,英特尔.紫光.浪潮等企业均已开始布局FPGA.早在SC2015大会上,浪潮就联合Altera,以及中国最大的智能语音技术提供商科大讯飞,共同发布了一套面向深度学习.基于Altera Arri…
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一…
Growing Pains for Deep Learning Advances in theory and computer hardware have allowed neural networks to become a core part of online services such as Microsoft's Bing, driving their image-search and speech-recognition systems. The companies offering…
论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature上发表深度学习的综述性论文,介绍了什么是监督学习.反向传播来训练多层神经网络.卷积神经网络.使用深度卷积网络进行图像理解.分布式特征表示与语言处理.递归神经网络,并对深度学习技术的未来发展进行展望. 原文摘要: 1,深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.        …
深度学习加速器堆栈Deep Learning Accelerator Stack 通用张量加速器(VTA)是一种开放的.通用的.可定制的深度学习加速器,具有完整的基于TVM的编译器堆栈.设计了VTA来揭示主流深度学习加速器最显著和最常见的特征.TVM和VTA一起构成了一个端到端的软硬件深度学习系统堆栈,包括硬件设计.驱动程序.JIT运行时和基于TVM的优化编译器堆栈. VTA具有以下主要功能: 通用.模块化.开源硬件. 简化了部署到FPGA的工作流程. 模拟器支持原型编译通过常规工作站. 基于P…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any function文章总结(前三章翻译在百度云里) 链接:http://neuralnetworksanddeeplearning.com/chap4.html: Michael Nielsen的<Neural Network and Deep Learning>教程中的第四章主要是证明神经网络可以用…
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn…
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b…
论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化操作,而maxout是对5个通道的特征图在通道的维度上执行最大化操作 这些论文已经有很多前人帮我们解读了,所以不需要自己再费心理解,非常好,所以自己也不需要再写什么多余的解读了,该说的下面的文献都说了. 基础资料 论文翻译:Maxout Networks,这篇博文讲得非常仔细非常清楚,必须仔细看 其…
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing co-adaptation of feature detectors” 感觉没什么好说的了,该说的在引用的这两篇博客里已经说得很清楚了,直接做试验吧 注意: 1.在模型的测试阶段,使用”mean network(均值网络)”来得到隐含层的输出,其实就是在网络前向传播到输出层前时隐含层节点的输出值都…
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep learning:五十一(CNN的反向求导及练习) Deep Learning 学习随记(八)CNN(Convolutional neural network)理解 ufldl学习笔记与编程作业:Convolutional Neural Network(卷积神经网络) [UFLDL]Exercise: Co…
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/ 主要挑战是unsupervised learning 无监督学习,2016年大量的研究专注于generative models 生成模型.几大巨头谷歌和脸书分别创新于自然语言处理NLP. 无监督学习 无监督学习指的是在没有额外信息的新数据中,提取…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTRL这些概念.究其原因,主要是神经网络很难解决训练的问题,比如梯度消失.当时的神经网络研究进入一个低潮期,不过Hinton老人家坚持下来了. 功夫不负有心人,2006年Hinton和学生发表了利用RBM编码的深层神经网络的Science Paper:Reducing the Dimensionalit…
转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13, 2015   Videos Deep Learning and Neural Networks with Kevin Duh: course page NY Course by Yann LeCun: 2014 version, 2015 version NIPS 2015 Deep Learn…
转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers A curated list of the most cited deep learning papers (since 2010) I believe that there exist classic deep learning papers which are worth reading re…
Awesome Deep Learning  Table of Contents Free Online Books Courses Videos and Lectures Papers Tutorials Researchers WebSites Datasets Frameworks Miscellaneous Contributing Free Online Books Deep Learning by Yoshua Bengio, Ian Goodfellow and Aaron Cou…
The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEARNING GAN Deep Learning has been the core topic in the Machine Learning community the last couple of years and 2016 was not the exception. In this arti…
  Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/adeshpande3.github.io/Deep-Learning-Research-Review-Week-2-Reinforcement-Learning This is the 2nd installment of a new series called Deep Learning Resea…
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology and Strategy @ IntuitionMachine.com 译自:https://medium.com/intuitionmachine/game-theory-maps-the-future-of-deep-learning-21e193b0e33a#.2vjbrl5di 若你一直fo…
译自:The Major Advancements in Deep Learning in 2016 建议阅读时间:10分钟 https://tryolabs.com/blog/2016/12/06/majoradvancementsdeeplearning2016/ 在过去的十多年来,深度学习一直是核心话题,2016年也不例外.本文回顾了他们认为可能会推动这个领域发展或已经对这个领域产生巨大贡献的技术.(1)无监督学习有史以来便是科研人员所面临的的主要挑战之一.由于大量产生式模型的提出,201…
原文发布于我的微信公众号: GeekArtT. 从CFA到如今的Data Science/Deep Learning的学习已经有一年的时间了.期间经历了自我的兴趣.擅长事务的探索和试验,有放弃了的项目,有新开辟的路线,有有始无终的遗憾,也有还在继续的坚持.期间有数不清的弯路.失落,有无法一一道明的挫败和孤独,也有每日重复单调训练而积累起来的自信与欣喜.和朋友聊天让我意识到,将我目前所摸索到的一些材料和路径分享出来,使其他想要进入这个领域的人或者仅仅是兴趣爱好者能够少走一些弯路,大概是有些意义的.…
前言: 本文主要是bengio的deep learning tutorial教程主页中最后一个sample:rnn-rbm in polyphonic music. 即用RNN-RBM来model复调音乐,训练过程中采用的是midi格式的音频文件,接着用建好的model来产生复调音乐.对音乐建模的难点在与每首乐曲中帧间是高度时间相关的(这样样本的维度会很高),用普通的网络模型是不能搞定的(普通设计网络模型没有考虑时间维度,图模型中的HMM有这方面的能力),这种情况下可以采用RNN来处理,这里的R…
和maxout(maxout简单理解)一样,DropConnect也是在ICML2013上发表的,同样也是为了提高Deep Network的泛化能力的,两者都号称是对Dropout(Dropout简单理解)的改进. 我们知道,Dropout是在训练过程中以一定概率1-p将隐含层节点的输出值清0,而用bp更新权值时,不再更新与该节点相连的权值.用公式描述如下: 其中v是n*1维的列向量,W是d*n维的矩阵,m是个d*1的01列向量,a(x)是一个满足a(0)=0的激发函数形式.这里的m和a(Wv)…
目前,深度网络(Deep Nets)权值训练的主流方法还是梯度下降法(结合BP算法),当然在此之前可以用无监督的方法(比如说RBM,Autoencoder)来预训练参数的权值,而梯度下降法应用在深度网络中的一个缺点是权值的迭代变化值会很小,很容易收敛到的局部最优点:另一个缺点是梯度下降法不能很好的处理有病态的曲率(比如Rosenbrock函数)的误差函数.而本文中所介绍的Hessian Free方法(以下简称HF)可以不用预训练网络的权值,效果也还不错,且其适用范围更广(可以用于RNN等网络的学…
前言: 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Bengio在08年提出,见其文章Extracting and composing robust features with denoising autoencoders.使用dAE时,可以用被破坏的输入数据重构出原始的数据(指没被破坏的数据),所以它训练出来的特征会更鲁棒.本篇博文主要是根据Benig…
前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural networks by preventing co-adaptation of feature detectors.中文大意为:通过阻止特征检测器的共同作用来提高神经网络的性能.本篇博文就是按照这篇论文简单介绍下Dropout的思想,以及从用一个简单的例子来说明该如何使用dropout. 基础知识:…
头脑一热,坐几十个小时的硬座北上去天津大学去听了门4天的深度学习课程,课程预先的计划内容见:http://cs.tju.edu.cn/web/courseIntro.html.上课老师为微软研究院的大牛——邓力,群(qq群介绍见:Deep learning高质量交流群)里面有人戏称邓力(拼音简称DL)老师是天生注定能够在DL(Deep learning)领域有所成就的,它的个人主页见:http://research.microsoft.com/en-us/people/deng/.这次我花费这么…