深度学习 Introducing convolutional networks:卷积神经网络介绍 卷积神经网络中有三个基本的概念:局部感受野(local receptive fields), 共享权重( shared weights), 池化( pooling). 与前面的神经网络不同,在这里我们用下图中的矩阵来表示输入神经元. 在cnn中,输入层的一个区域(例如,5 * 5)对应下一层隐含层中的一个神经元,这个区域就是一个局部感受野.如下图所示: 通过在输入矩阵中滑动局部感受野来对应隐含层中的…
转载请注明出处:http://www.cnblogs.com/zhangcaiwang/p/6875533.html sigmoid neuron 微小的输入变化导致微小的输出变化,这种特性将会使得学习称为可能.但是在存在感知器的网络中,这是不可能的.有可能权重或偏置(bias)的微小改变将导致感知器输出的跳跃(从0到1),从而导致此感知器后面的网络以一种难以理解的方式发生巨大的改变.解决这一问题就要使用另外一种人工神经元-sigmoid神经元(也叫逻辑神经元). sigmoid神经元的输入不只…
交叉熵 交叉熵是用于解决使用二次代价函数时当单个神经元接近饱和的时候对权重和bias权重学习的影响.这个公式可以看出,当神经元饱和的时候,sigma的偏导接近于0,w的学习也会变小.但是应用交叉熵作为代价函数的话,只有当所有的神经元接近0或者1的时候才会出现这种情况.它解决了初始化w和bias时坏的w和bias带来的影响. 交叉熵对w求偏导: ,,,,有  最后得出: 由该公式可以看出,只有大部分样例的输出接近期望值时,w的学习才会变缓.bias同理. 上面的讨论只针对有一个神经元的网络. 如果…
转载请注明出处http://www.cnblogs.com/zhangcaiwang/p/6886037.html 以前都没有正儿八经地看过英文类文档,神经网络方面又没啥基础,结果第一章就花费了我将近一周的晚上.不过还是有收获的,希望英文阅读水平越来越高吧. 上一章讲解了神经网络如何通过梯度下降学习权重和偏差,但是没有讲解代价函数(cost function)的梯度是怎么求解的.本章中主要讲解一个用来计算代价函数梯度的快速算法:反向传播(backpropagation)算法. Warm up:…
UFLDL深度学习笔记 (六)卷积神经网络 1. 主要思路 "UFLDL 卷积神经网络"主要讲解了对大尺寸图像应用前面所讨论神经网络学习的方法,其中的变化有两条,第一,对大尺寸图像的每个小的patch矩阵应用相同的权值来计算隐藏层特征,称为卷积特征提取:第二,对计算出来的特征矩阵做"减法",把特征矩阵纵横等分为多个区域,取每个区域的平均值(或最大值)作为输出特征,称为池化.这样做的原因主要是为了降低数据规模,对于8X8的图像输入层有64个单元,而100X100的图像…
神经网络和深度学习这一块内容与机器学习课程里Week4+5内容差不多. 这篇笔记记录了Week4+5中没有的内容. 参考笔记:深度学习笔记 神经网络和深度学习 结构化数据:如数据库里的数据 非结构化数据:hard to understand:如图像.文本 一. 深度学习的优势 算法.硬件计算能力的提高使神经网络运行速度变快 大数据(带labels的)使得神经网络精确度更高 在数据集不多的时候深度学习的优势并不是很明显,但是在大数据的情况下,辅助以好的算法和强计算能力,会使神经网络的运行速度和精确…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中,哪些你到现在为止依然保持有热情的. Hinton:我认为我觉得最具学术之美的是受限Boltzmann机器,我们认为他能用很简单很简单的算法去应用到密度很高的连接起来的网络. Hinton:我仍然认为无监督学习十分重要,当我们真正搞明白一些东西以后,结果会比现在好很多.不过目前并没有找到这种方法.…
Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 最近tensorflow团队出了一个model项目,和这个课程无关,但是可以参考 框架: TensorFlow 谷歌出品的基于Pytho…
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 深度学习笔记(三):激活函数和损失函数 深度学习笔记:优化方法总结 深度学习笔记(四):循环神经网络的概念,结构和代码注释 深度学习笔记(五):LSTM 深度学习笔记(六):Encoder-Decoder模型和Attention模型…
UFLDL深度学习笔记 (一)基本知识与稀疏自编码 前言 近来正在系统研究一下深度学习,作为新入门者,为了更好地理解.交流,准备把学习过程总结记录下来.最开始的规划是先学习理论推导:然后学习一两种开源框架:第三是进阶调优.加速技巧.越往后越要带着工作中的实际问题去做,而不能是空中楼阁式沉迷在理论资料的旧数据中.深度学习领域大牛吴恩达(Andrew Ng)老师的UFLDL教程 (Unsupervised Feature Learning and Deep Learning)提供了很好的基础理论推导…