最短路径算法具体的形式包括: 确定起点的最短路径问题:即已知起始结点,求最短路径的问题.适合使用Dijkstra算法. 确定终点的最短路径问题:即已知终结结点,求最短路径的问题.在无向图中,该问题与确定起点的问题完全等同:在有向图中,该问题等同于把所有路径方向反转的确定起点的问题. 确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径. 全局最短路径问题:求图中所有的最短路径.Floyd-Warshall算法. dijkstra算法思想: 开始时,S={u},T=V-{u}; 对…
图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph)表示的是顶点之间的邻接关系. (1) 无向图(undirect graph)      E中的每条边不带方向,称为无向图.(2) 有向图(direct graph)      E中的每条边具有方向,称为有向图.(3) 混合图       E中的一些边不带方向, 另一些边带有方向.(4) 图的阶      指…
一.名称 动态规划法应用 二.目的 1.贪婪技术的基本思想: 2.学会运用贪婪技术解决实际设计应用中碰到的问题. 三.要求 1.实现基于贪婪技术思想的Prim算法: 2.实现基于贪婪技术思想的Dijkstra算法. 四.内容 1.实现基于贪婪技术思想的Prim算法 1.1.Prim算法的伪代码描述 算法 Prim(G) //构造最小生成树的Prim算法 //输入:加权连通图G<V,E> //输出:E(T),组成G的最小生成树的边的集合 V(t)←{V0} //可以用任意顶点来初始化树的顶点集合…
前言 Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的.这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个. 在网络路由中,RIP协议(距离向量路由算法)一般用Bellman-Ford算法,同时由于简单性所以也适用于分布式系统:但是它的复杂度是O(VE),比Dijkstra算法要慢上许多.而OSPF协议,链路状态分组创建的时候一般用Dijkst…
前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知识准备: 1.表示图的数据结构 用于存储图的数据结构有多种,本算法中笔者使用的是邻接矩阵.  图的邻接矩阵存储方式是用两个数组来表示图.一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息. 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 从上面可以看出,无向图的边…
1.Dijkstra 1)      适用条件&范围: a)   单源最短路径(从源点s到其它所有顶点v); b)   有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图) c)   所有边权非负(任取(i,j)∈E都有Wij≥0); 2)      算法描述: 在带权图中最常遇到的问题就是,寻找两点间的最短路径问题. 解决最短路径问题最著名的算法是Djikstra算法.这个算法的实现基于图的邻接矩阵表示法,它不仅能够找到任意两点的最短路径,还可以找到某个指定点到其他…
最短路径: 对于网图来说,最短路径是指两个顶点之间经过的边上权值和最少的路径,我们称第一个顶点是源点,最后一个顶点是终点 迪杰斯特拉 ( Dijkstra) 算法是并不是一下子就求出 了 Vo 到V8 的最短路径,而是一步步求出它们之间顶点的最短路径,过程中都是基于已经求出的最短路径的基础上,求得更远顶点的最短路径,最终得到你要的结果   JS代码: //定义邻接矩阵 let Arr2 = [ [0, 1, 5, 65535, 65535, 65535, 65535, 65535, 65535]…
图结构练习——最短路径 Time Limit: 1000 ms            Memory Limit: 65536 KiB Submit Statistic Discuss Problem Description 给定一个带权无向图,求节点1到节点n的最短路径. Input 输入包含多组数据,格式如下. 第一行包括两个整数n m,代表节点个数和边的个数.(n<=100) 剩下m行每行3个正整数a b c,代表节点a和节点b之间有一条边,权值为c. Output 每组输出占一行,仅输出从…
Dijkstra 算法解决的是带权重的有向图上单源最短路径问题,该算法要求所有边的权重都为非负值.该算法的时间复杂度是O(N2),相比于处理无负权的图时,比Bellmad-Ford算法效率更高. 算法描述: 首先引用<算法导论>中的一段比较官方的话,如果可以看懂,那下一部分就可以跳过了: “Dijkstra算法在运行过程中维持的关键信息是一组结点集合S.从源结点s到该集合中每个结点之间的最短路径已经被找到.算法重复从结点集 V - S 中算则最短路径估计的最小的结点 u ,将 u 加入到集合S…
问题的提法是:给定一个没有负权值的有向图和其中一个点src作为源点(source),求从点src到其余个点的最短路径及路径长度.求解该问题的算法一般为Dijkstra算法. 假设图顶点个数为n,则针对其余n-1个点需要分别找出点src到这n-1个点的最短路径.Dijkstra算法的思想是贪心法,先找出最短的那条路径,其次找到次短的,再找到第三短的,依次类推,直到找完点src到达其余所有点的最短路径.下面举例说明算法和贪心过程. 如下图所示(该图源自<数据结构预(用面向对象方法与C++语言描述)(…