聊天机器人又被称为会话系统,已经成为一个热门话题,许多公司都在这上面的投入巨大,包括微软,Facebook,苹果(Siri),Google,微信,Slack.许多创业公司尝试通过多种方式来改变与消费者服务方式.许多公司希望开发对话机器人能够自然地和人进行交流,并且为了实现这个目标,很多公司声称使用了自然语言处理(NLP)和深度学习技术.但是很多时候对AI的夸大宣传,让人民很难分清事实和美好的想象. 接下来的是回顾在会话系统中使用的深度学习技术,了解现在的进展情况,哪些在近期是可能的,哪些是不可能…
不多说,直接上干货! 十.总结与展望 1)Deep learning总结 深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法.换句话来说,深度学习算法自动的提取分类需要的低层次或者高层次特征.高层次特征,一是指该特征可以分级(层次)地依赖其他特征,例如:对于机器视觉,深度学习算法从原始图像去学习得到它的一个低层次表达,例如边缘检测器,小波滤波器等,然后在这些低层次表达的基础上再建立表达,例如这些低层次表达的线性或者非线性组合,然后重复这个过程,最后得到一个高层次的表达.…
deep learning新征程(二) zoerywzhou@163.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2016-4-5   声明 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除. 3)本人才疏学浅,整理总结…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
原文转载:http://licstar.net/archives/328 Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果.关于这个原因,引一条我比较赞同的微博. @王威廉:Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而naacl则有0篇.有一种说法是,语言(词.句子.篇章等)属于人类认知过程中产生的高层认知抽象实体,而语音和图像属于较为底层的原始输入信号,所以…
转自licstar,真心觉得不错,可惜自己有些东西没有看懂 这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领域中应用的理解和总结,在此分享.其中必然有局限性,欢迎各种交流,随便拍. Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果.关于这个原因,引一条我比较赞同的微博. @王威廉:Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而na…
大纲 深度学习介绍 深度学习训练的技巧 神经网络的变体 展望 深度学习介绍 深度学习介绍 深度学习属于机器学习的一种.介绍深度学习之前,我们先大致了解一下机器学习. 机器学习,拿监督学习为例,其本质上是要找到一个函数映射:输入数据(也就是训练样本)通过函数映射(也就是我们的机器学习算法)到输出空间上(也就是目标值,如果是分类问题,映射到某一类上). \[Meachine Learning \approx LookingFor A Function.\] 那么我们如何从一个函数空间里找到目标函数呢…
之前的笔记,算不上是 Deep Learning, 只是为理解Deep Learning 而需要学习的基础知识, 从下面开始,我会把我学习UFDL的笔记写出来 #主要是给自己用的,所以其他人不一定看得懂# UFDL链接 : http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 自编码器( Autoencoders ):(概述) 自编码器是只有一层隐藏节点,输入和输出具有相同节点数的神经网络. 自编码器的目的是求的函数 . 也…
最近一直在开发Orchestra Pipeline System,歇两天翻译点文章换换气.这篇文章是无意间看到的,自己从2015年就开始关注机器学习在视效领域的应用了,也曾利用碎片时间做过一些算法移植的工作,所以看到这篇文章的时候很有共鸣,遂决定翻译一下. 原文链接:https://www.fxguide.com/fxfeatured/new-machine-learning-server-for-deep-learning-in-nuke/ 正文: Recent years have seen…
 1. 直接上手篇 台湾李宏毅教授写的,<1天搞懂深度学习> slideshare的链接: http://www.slideshare.net/tw_dsconf/ss-62245351?qid=108adce3-2c3d-4758-a830-95d0a57e46bc&v=&b=&from_search=3 网盘下载链接:http://pan.baidu.com/s/1nv54p9R     密码:3mty. 中文在线课程:Hung-yi Lee (http://spe…
关于DL,由于我是零经验入门, 事实上我是从最简单的ML开始学起, 所以这个系列我也从ML开始讲起. ===============并行分割线================= 一.线性回归 线性回归主要运用于“预测”类问题: 假设我们有一堆的数据(房间大小,房价).给定一个没见过的房间大小,它的价格应该怎么估计呢? 一般来说,我们可以假定房价h(x)和大小x之间存在一种线性关系.求出最优h(x)后, 对于每一个大小x的房间,我们都可以给出一个估价h(x) 概念:COST FUNCTION(代价…
代码1如下: #深度学习入门课程之感受神经网络(上)代码解释: import numpy as np import matplotlib.pyplot as plt #matplotlib是一个库,pyplot是其中一个模块 #%matplotlib inline 适用于在ipython notebook中进行绘图内嵌说明,由于我在Pycharm上写的,应此不需要这条以及下面的几个命令 plt.rcParams['figure.figsize'] = (10.0,8.0) #创建一个10*8大小…
关于在51CTO上的深度学习入门课程视频(9)中的code进行解释与总结: (1)单层神经网络: #coding:cp936 #建立单层神经网络,训练四个样本, import numpy as np def nonlin(x,deriv=False): #deriv为False计算前向传播值,为True时计算反向偏导 if deriv == True: return x*(1-x) return 1/(1+np.exp(-x)) X = np.array([[0,0,1],[0,1,1],[1,…
废话: 这博客有三个月没更新了. 三个月!!!尼玛我真是够懒了!! 这三个月我复习什么去了呢? 托福………… 也不是说我复习紧张到完全没时间更新, 事实上我甚至有时间打LOL. 只是说,我一次就只能(只想?)做一件事情. 对我来说,在两种不同思维之间转换是十分耗费能量的. 说白了我!就!是!个!废!柴!……哼…… 前言: PCA与白化, 就是对输入数据进行预处理, 前者对数据进行降维,后者对数据进行方差处理. 虽说原理挺简单,但是作用可不小. 之前的师兄做实验的时候,就是忘了对数据预处理, 结果…
过拟合(overfitting): 实际操作过程中,无论是线性回归还是逻辑回归,其假设函数h(x)都是人为设定的(尽管可以通过实验选择最优). 这样子就可能出线“欠拟合”或者“过拟合”现象. 所谓过拟合,就是模型复杂度过高,模型很好地拟合了训练样本却对未知样本的预测能力不足.(亦称"泛化"能力不足) 所谓欠拟合,就是模型复杂度过低,模型不能很好拟合不管是训练样本还是其他样本. 例子: 如果输出与输入大致成二次关系, 那么我们用一次函数去拟合,拟合结果过于平缓,跟不上变化,这就是“欠拟合…
反向传播算法(Back Propagation): 引言: 在逻辑回归中,我们使用梯度下降法求参数方程的最优解. 这种方法在神经网络中并不能直接使用, 因为神经网络有多层参数(最少两层),(?为何不能) 这就要求对梯度下降法做少许改进. 实现过程:  一.正向传播 首先,同逻辑回归,我们求出神经网络输出与实际值的“误差”——COST: 这里先使用欧式距离而不是索夫曼函数作为输出的cost: 展开之后: (注意右边的权重衰减项,既规则化) 二.反向传播 对于第  层(输出层)的每个输出单元 ,我们…
神经元: 在神经网络的模型中,神经元可以表示如下 神经元的左边是其输入,包括变量x1.x2.x3与常数项1, 右边是神经元的输出 神经元的输出函数被称为激活函数(activation function),输出值被称为激活值(activation value). 激活函数有很多种,其中最简单的莫过于sigmoid函数. 除非特别声明,否则博客里提及的激活函数均为sigmoid 神经网络: 多个神经元首尾相连连接成神经网络(Neural Network),可以表示如下: 尽管生物体中神经云之间的连接…
逻辑回归主要用于解决分类问题,在现实中有更多的运用, 正常邮件or垃圾邮件 车or行人 涨价or不涨价 用我们EE的例子就是: 高电平or低电平 同时逻辑回归也是后面神经网络到深度学习的基础. (原来编辑器就有分割线的功能啊……) 一.Logistic Function(逻辑方程) 同线性回归,我们会有一个Hypothesis Function对输入数据进行计算已得到一个输出值. 考虑到分类问题的特点,常用的函数有sigmoid方程(又叫logistic方程) 其函数图像如下 可见: 1.输出区…
为了获得良好的收敛,在进行梯度下降前,我们可以对数据进行预处理. 目标是使得数据大小在同一个数据数量级上,均值为零. 一般将数据放缩到(-1,1)区间, 我们可以对数据进行如下操作: 其中u1是数据的均值,s1为数据绝对值的最大值. 用处理后的数据进行梯度下降可以获得更好效果.…
上次用简单地介绍了线性回归的模型和梯度下降获得参数方程的方法. 用到的一个十分简单的参数方程h(x)=theta0+theta1*x 在现实问题中,参数方程能要复杂许多, 不只有一个未知量x,可能有多个未知量x.y,不只有一次项,更有多次项, 因此,梯度下降的过程变化为: (注意偏导的计算公式)…
摘要:介绍了使用Scrapy处理JSON API和AJAX页面的方法 有时候,你会发现你要爬取的页面并不存在HTML源码,譬如,在浏览器打开http://localhost:9312/static/,然后右击空白处,选择“查看网页源代码”,如下所示: 就会发现一片空白 留意到红线处指定了一个名为api.json的文件,于是打开浏览器的调试器中的Network面板,找到名为api.json的标签 在上图的红色框里就找到了原网页中的内容,这是一个简单的JSON API,有些复杂的API会要求你先登录…
前情提要 在上一篇文章<[HTTP 2.0] 序言>中,我们简要介绍了 HTTP 2 协议的概要和协议状态. 在本篇文章中,我们将会了解到 HTTP 2 协议简介(Introduction)部分的内容. 简介(Introduction) 超文本传输协议(HTTP)是一个非常成功的协议.然而,HTTP 1.1 所使用的底层传输([RFC7230, 第六节]),对现代的应用程序性能带来了一些负面作用. 尤其是在 HTTP 1.0 中,在一个 TCP 连接中,只允许处理一个请求. HTTP 1.1…
参考资料: https://morvanzhou.github.io/ 非常感谢莫烦老师的教程 http://mnemstudio.org/path-finding-q-learning-tutorial.htm http://www.cnblogs.com/dragonir/p/6224313.html 这篇文章也是用非常简单的说明将 Q-Learning 的过程给讲解清楚了 http://www.cnblogs.com/jinxulin/tag/%E5%A2%9E%E5%BC%BA%E5%A…
这方面的资料比较零散,学起来各种碰壁,碰到各种问题,这里就做下学习记录. 参考资料: https://morvanzhou.github.io/ 非常感谢莫烦老师的教程 http://mnemstudio.org/path-finding-q-learning-tutorial.htm http://www.cnblogs.com/dragonir/p/6224313.html 这篇文章也是用非常简单的说明将 Q-Learning 的过程给讲解清楚了 http://www.cnblogs.com…
转载 http://blog.sina.com.cn/s/blog_4a1853330102v0mr.html Sparse coding: 本节将简单介绍下sparse coding(稀疏编码),因为sparse coding也是deep learning中一个重要的分支,同样能够提取出数据集很好的特征.本文的内容是参考斯坦福deep learning教程:Sparse Coding,Sparse Coding: Autoencoder Interpretation,对应的中文教程见稀疏编码,…
原ppt下载:pan.baidu.com/s/1nv54p9R,密码:3mty 需深入实践并理解的重要概念: Deep Learning: SoftMax Fuction(输出层归一化函数,与sigmoid相似的激活函数,用于解决分类问题(分类大于2时:sigmoid解决二分类问题)) 1) 2)每个neuron的softmax输出:,其中: DNN(Deep Neural Networks): MSE(Means Square Error,均方误差) / CE(Cross Entropy,交叉…
原论文出处:https://www.nature.com/articles/nature14539 by Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature volume521, pages436–444 (28 May 2015) 译者:这篇论文性质为深度学习的综述,原本只是想做做笔记,但找到的翻译都不怎么通顺.既然要啃原文献,索性就做个翻译,尽力准确通畅.转载使用请注明本文出处,当然实在不注明我也并没有什么办法. 论文中大量使用貌似作者默认术…
总结 一.处理数据 1.1 向量化(vectorization) (height, width, 3) ===> 展开shape为(heigh*width*3, m)的向量 1.2 特征归一化(Normalization) 一般数据,使用标准化(Standardlization), z(i) = (x(i) - mean) / delta,mean与delta代表X的均值和标准差,最终特征处于[-1,1]区间 对于图片,可直接使用 Min-Max Scaliing,即将每个特征直接除以 255,…
3.1 神经网络概述(Neural Network Overview ) (神经网络中,我们要反复计算a和z,最终得到最后的loss function) 3.2 神经网络的表示(Neural Network Representation) 3.3 计算一个神经网络的输出(Computing a Neural Network's output ) 向量化计算: 详细过程见下: 公式 3.10: (W---4x3) 3.4 多样本向量化(Vectorizing across multiple exa…
目录 不基于模型的控制 选取动作的方法 在策略上的学习(on-policy) 不在策略上的学习(off-policy) 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发展历程(四) DQN发展历程(五) 不基于模型的控制 选取动作的方法 贪婪法,每次控制都选择状态值最大的动作,容易局部收敛,找不到全局最优. 引入 epsilon-greedy,按 epsilon 的概率随机选择一个动作,按 1 - epsilon 的概率使用贪婪法,选择状态值最大的动作 在策略上的…