洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: 输入一个整数N 输出格式: 输出答案 输入输出样例 输入样例#1: 1439 输出样例#1: 102426508 Solution 极其恶心的一道题... 看到这种题肯定是需要化简式子的,因为出题人不会好到给你一个好做的式子 \[\frac{1}{x}+\frac{1}{y}=\frac{1}{n!…
洛谷P1445:https://www.luogu.org/problemnew/show/P1445 推导过程 1/x+1/y=1/n! 设y=n!+k(k∈N∗) 1/x​+1/(n!+k)​=1/n!​ 等式两边同乘x*n!*(n!+k)得 n!(n!+k)+xn!=x(n!+k) 移项得 n!(n!+k)=x(n!+k)−xn!=xk x=n!(n!+k)​/k=(n!)2​/k+n! 因为x为正整数 所以(n!)2​/k+n!为正整数0. 因为n!为正整数 所以只要(n!)2​/k为正…
#include<cstdio> #include<algorithm> #include<cstring> #include<vector> using namespace std; #define fi first #define se second #define mp make_pair #define pb push_back typedef long long ll; typedef unsigned long long ull; typedef…
BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{n!}\] 通分:\[\dfrac{x + y}{xy} = \dfrac{1}{n!}\] 十字相乘:\[(x + y) \times n! = xy\] 把\((x + y) \times n!\)移到右项:\[xy - (x + y) \times n! = 0\] 两边同时加上\((n!…
P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax+tx$ $x=a^{2}/t+a$ $x=(n!)^{2}/t+n!$ 再根据唯一分解定理 $(n!)^{2}=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 将$(n!)^{2}$分解质因数一下 最后乘法原理套上去 end.…
Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac{xy}{x+y}=n!$$ $$xy=n!(x+y)$$ $$-n!(x+y)+xy=0$$ $$(n!x+n!y)-xy=0$$ $$(n!)^2+(n!x+n!y)-xy=(n!)^2$$ $$(x-n!)(y-n!)=(n!)^2$$ 所以$(x-n!)$就是$(n!)^2$的一个因子. 又…
题面 洛谷P6788 「EZEC-3」四月樱花 给定 \(n,p\),求: \[ans=\left(\prod_{x=1}^n\prod_{y|x}\frac{y^{d(y)}}{\prod_{z|y}(z+1)^2}\right)\bmod p \] 数据范围:\(1\le n\le 2.5\cdot 10^9\),\(9.9\cdot 10^8<p<1.1\cdot 10^9\). 蒟蒻语 一道题撑起一场月赛,良心又劲爆. 膜拜出题人 @SOSCHINA,@muxii. 蒟蒻解 开局一波猛…
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师)的掌握程度 考完试有人说这题是马拉车,吓死我了 首先,你把数据读入之后,先用一个大法师把以每个节点为根的子树的大小和权值都预处理出来,方便待会剪枝 然后,你对以每个节点为根的子树,都判断一下以下条件(这时刚才处理的东西就有用了) ① 左子树和右子树的节点数是否相等 ② 左子树和右子树的权值是否相等…
本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨性 介于使用了新的推导方法,调整了推导顺序 补充了关于线性筛的欧拉函数性质8 又又又又又 修改了部分错误(工程量太大,老是出错) 安利了 3b1b 的链接,虽然与本文章无关,但对我们的思维提升很有利 将欧拉函数的定义正确修改 减少了 \(ans(n)\) 推导公式的争议性,加强了推导过程的严谨性 更新了 py…
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种是通过分成 多块后在每块上打标记以实现快速区间修改,区间查询的一种算法.根号 分治与其思路相似,将原本若一次性解决时间复杂度很高的问题分块去解 决来降低整体的时间复杂度. 例题 以本题举例子哈希冲突 本题作为论文的第一道题目,是一道很好的练习题,注意,本体给出的 \(value[i]\) 是 \(i…