ACE学习综述(1)】的更多相关文章

1. ACE学习综述 1.1. ACE项目的优点 可以跨平台使用,基本上可以实现一次编写,多平台运行. ACE本身不仅仅是一个简单的网络框架,对于网络框架涉及到的进程管理.线程管理等系统本身相关的内容也进行了统一的封装,甚至消息队列和内存管理等也都有统一封装. 代码的质量还是比较高,能经得起长时间运行的考验. 代码经过层层封装和模板通用性封装,仍然能够保持较高的性能. 1.2. ACE项目的缺点 ACE的前身是 <Unix网络编程>,该书页数达上千页,包括了各种网络开发的细节.移植扩展和网络开…
本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 2017-01-28 Yuxi Li 机器之心 选自arXiv 作者:Yuxi Li 编译:Xavier Massa.侯韵楚.吴攀   摘要 本论文将概述最近在深度强化学习(Deep Reinforcement Learning)方面喜人的进展.本文将从深度学习及强化学习的背景知识开始,包括了对实验平台的…
2014 TKDE(IEEE Transactions on Knowledge and Data Engineering) 张敏灵,周志华 简单介绍 传统监督学习主要是单标签学习,而现实生活中目标样本往往比较复杂,具有多个语义,含有多个标签.本综述主要介绍了多标签学习的一些相关内容,包括相关定义,评价指标,8个多标签学习算法,相关的其它任务. 论文大纲 相关定义:学习任务,三种策略 评价指标:基于样本的评价指标,基于标签的评价指标 学习算法:介绍了8个有代表性的算法,4个基于问题转化的算法和4…
原文摘要:深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.这些方法在很多方面都带来了显著的改善,包含最先进的语音识别.视觉对象识别.对象检測和很多其他领域,比如药物发现和基因组学等.深度学习可以发现大数据中的复杂结构.它是利用BP算法来完毕这个发现过程的.BP算法可以指导机器怎样从前一层获取误差而改变本层的内部參数,这些内部參数可以用于计算表示.深度卷积网络在处理图像.视频.语音和音频方面带来了突破,而递归网络在处理序列数据.比方文本和语音方面表现出了闪亮的一面. 机…
目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D点云分割 3.1 3D语义分割 3.1.1 基于投影的方法 多视图表示 球形表示 3.1.2 基于离散的方法 稠密离散表示 稀疏的离散表示 3.1.3 混合方法 3.1.4 基于点的方法 逐点MLP方法 点卷积方法 基于RNN方法 基于图方法 3.2 实例分割 3.2.1 基于候选框的方法 3.2.2 不需要候选框的方法 3.3 部件分割 3.4 总结 4. 结论 3D点云深度学习:综述(3D点云分割部分) Deep Le…
目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D形状分类 3.1基于多视图的方法 3.2基于体素的方法 3.3基于点的方法 3.3.1 点对多层感知机方法 3.3.2基于卷积的方法 3.3.2.1 3D连续卷积网络 3.3.2.2 3D离散卷积网络 3.3.3基于图的方法 3.3.3.1 空间域中的基于图的方法 3.3.3.2 谱域中的基于图的方法 3.3.4基于层级数据结构的方法 3.3.5其他方法 3.4总结 3D点云深度学习:综述(点云形状识别部分) Deep L…
摘要:人工智能在数据密集型应用中取得了成功,但它缺乏从有限的示例中学习的能力.为了解决这一问题,提出了少镜头学习(FSL).利用先验知识,可以快速地从有限监督经验的新任务中归纳出来.为了全面了解FSL,我们进行了一项调查研究.我们首先要澄清对FSL的正式定义.进而得出不可靠经验风险最小化是FSL的核心问题.基于如何利用先验知识来处理核心问题,我们将不同的FSL方法分为三类:数据利用先验知识来增加监督经验,模型利用先验知识来约束假设空间,算法利用先验知识改变对假设空间中最优假设参数的搜索.在这种统…
原文链接 小样本学习与智能前沿 . 在这个公众号后台回复'CRR-FMM',即可获得电子资源. 1 Introduction In this short communication, we present a concise review of recent representative meta- learning methods for few-shot image classification. We re- fer to such methods as few-shot meta-lea…
目录 原文链接: 小样本学习与智能前沿 01 Multitask Learning 01.1 Parameter Sharing 01.2 Parameter Tying. 02 Embedding Learning 02.1 Task-Specific Embedding Model. 02.2 Task-Invariant Embedding Model. 02.3 Hybrid Embedding Model. 03 Learning with External Memory 03.1 R…
一.ACE_Reactor的使用方法 1.创建ACE_Event_Handler的派生类. class MyHandler : public ACE_Event_Handler { public: MyHandler( // ... ) :ACE_Event_Handler() { // ... } // ... } 2.重写一个可以被ACE_Reactor调用的方法. int handle_timeout ( const ACE_Time_Value &current_time,const v…