AVL的旋转】的更多相关文章

关于AVL树旋转的代码网络上铺天盖地. 一些经典的实现方法如下: AVLTree SingleLeftRotation(AVLTree A) { AVLTree B = A->left; A->Left = B->Right; B->Right = A; A->Height = Max(GetHeight(A->Left), GetHeight(A->Right)) + ; B->Height = Max(GetHeight(B->Left), A-&…
转自http://blog.csdn.net/gabriel1026/article/details/6311339 平衡二叉树在进行插入操作的时候可能出现不平衡的情况,AVL树即是一种自平衡的二叉树,它通过旋转不平衡的节点来使二叉树重新保持平衡,并且查找.插入和删除操作在平均和最坏情况下时间复杂度都是O(log n) AVL树的旋转一共有四种情形,注意所有旋转情况都是围绕着使得二叉树不平衡的第一个节点展开的. 1. LL型 平衡二叉树某一节点的左孩子的左子树上插入一个新的节点,使得该节点不再平…
什么是AVL树? AVL树是带有平衡条件的二叉查找树,一颗AVL树首先是二叉查收树(每个节点如果有左子树或右子树,那么左子树中数据小于该节点数据,右子树数据大于该节点数据),其次,AVL树必须满足平衡条件:每个节点的左子树和右子树的高度最多相差1(空树的高度定义为-1). 什么是旋转?AVL树为什么需要用到旋转? 由于AVL树本身的性质,当我们插入节点时,有可能会破坏AVL树的平衡性,使一棵树的左子树和右子树的高度相差大于1,此时就需要对树进行一些简单的修正来恢复其性质,这个修正的过程就叫做旋转…
03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top down, and left to right. Input Specification: Each input file contains one test case. For each case, the first line gives a positive integer N (<=10) wh…
AVL 树要在插入和删除结点后保持平衡,旋转操作必不可少.关键是理解什么时候应该左旋.右旋和双旋.在Youtube上看到一位老师的视频对这个概念讲解得非常清楚,再结合算法书和网络的博文,记录如下. 1.1 AVL 的旋转 一棵AVL树是其每个节点的左子树和右子树的高度差最多为1的二叉查找树(空树高度定义为-1).AVL树插入和删除时都可能破坏AVL的特性,可以通过对树进行修正来保证特性,修正方法称为旋转. 下面以4个插入操作为例,说明不同旋转对应的场景. 1.1.1 LL-R 插入结点为6,沿着…
详解什么是平衡二叉树(AVL)(修订补充版) 前言 Wiki:在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度都是 O(logn).增加和删除元素的操作则可能需要借由一次或多次树旋转,以实现树的重新平衡.AVL 树得名于它的发明者 G. M. Adelson-Velsky 和 Evgenii Landis,他们在1962年的论文<An algorithm for…
前言 Wiki:在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度都是O(logn).增加和删除元素的操作则可能需要借由一次或多次树旋转,以实现树的重新平衡.AVL 树得名于它的发明者 G. M. Adelson-Velsky 和 Evgenii Landis,他们在1962年的论文<An algorithm for the organization of info…
定义:一棵AVL树或者是空树,或者是具有下列性质的二叉搜索树:它的左子树和右子树都是AVL树,且左右子树的高度之差的绝对值不超过1 AVL树失衡旋转总结: 假如以T为根的子树失衡.定义平衡因子为 H(left) – H(right) = bf (平衡因子,balance factor),T的左子树为L,右子树为R: 情形1:如果 bf(T) = 2,且bf(L)=1, 执行右旋转,高度减1: 情形2:如果 bf(T) =2 ,且bf(L)= -1, 执行先左后右旋转,高度减1: 情形3:如果 b…
定义及性质 AVL树:AVL树是一颗自平衡的二叉搜索树. AVL树具有以下性质: 根的左右子树的高度只差的绝对值不能超过1 根的左右子树都是 平衡二叉树(AVL树) 百度百科: 平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法) 且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树. 平衡二叉树的常用实现方法有红黑树.AVL.替罪羊树.Treap.伸展树等. 最小二叉平衡…