首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
决策树学习(ID3)
】的更多相关文章
《机器学习实战》学习笔记第三章 —— 决策树之ID3、C4.5算法
主要内容: 一.决策树模型 二.信息与熵 三.信息增益与ID3算法 四.信息增益比与C4.5算法 五.决策树的剪枝 一.决策树模型 1.所谓决策树,就是根据实例的特征对实例进行划分的树形结构.其中有两种节点:内节点表示一个特征,叶子结点表示一个类(或称为标签). 2.在决策树中,从根节点开始,对实例的所有特征进行测试,根据测试结果,选择最合适的特征作为依据,将实例分配到其子节点上:此时,每一个子节点都对应着该特征(即父节点上的特征)的一个取值.之后一直递归下去,直到所有节点上所有实例的类都一样.…
从决策树学习谈到贝叶斯分类算法、EM、HMM --别人的,拷来看看
从决策树学习谈到贝叶斯分类算法.EM.HMM 引言 最近在面试中,除了基础 & 算法 & 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全不代表你将来的面试中会遇到此类问题,只是因为我的简历上写了句:熟悉常见的聚类 & 分类算法而已),而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关数据挖掘十大算法的系列文章以作为自己备试之用,甚至以备将来常常回顾思考.行文杂乱,但侥幸若能对读者起到一点帮助,则幸甚至哉. 本文借鉴和参考了两本书,…
从决策树学习谈到贝叶斯分类算法、EM、HMM
从决策树学习谈到贝叶斯分类算法.EM.HMM (Machine Learning & Recommend Search交流新群:172114338) 引言 log0为0). 如果写代码实现熵的计算,则例如以下所看到的: //依据详细属性和值来计算熵 double ComputeEntropy(vector <vector <string> > remain_state, string attribute, string value,bool i…
机器学习之决策树(ID3 、C4.5算法)
声明:本篇博文是学习<机器学习实战>一书的方式路程,系原创,若转载请标明来源. 1 决策树的基础概念 决策树分为分类树和回归树两种,分类树对离散变量做决策树 ,回归树对连续变量做决策树.决策树算法主要围绕两大核心问题展开:第一, 决策树的生长问题 , 即利用训练样本集 , 完成决策树的建立过程 .第二, 决策树的剪枝问题,即利用检验样本集 , 对形成的决策树进行优化处理.这里主要介绍分类树的两个经典算法:ID3算法和C4.5算法,他们都是以信息熵作为分类依据,ID3 是用信息增益,而C4.5…
决策树学习笔记(Decision Tree)
什么是决策树? 决策树是一种基本的分类与回归方法.其主要有点事模型具有可得性,分类速度快.学习时,利用训练数据,根据损失函数最小化原则建立决策树模型:预测时,对新数据,利用决策树模型进行分类. 决策树学习通常包含以下三个步骤: 选择特征 决策树生成 剪枝 决策树的改进路线: ID3--->C4.5--->CART (1)其中ID3是基于信息增益来选择划分属性 (2)C4.5不直接使用增益率来选择划分属性,而是使用了一个启发式:先从候选划分属性中选取信息增益高于平局水平的属性,再从中选择增益率最…
决策树之ID3、C4.5、C5.0等五大算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- C5.0决策树之ID3.C4.5.C5.0算法 为了区分红蓝模块,先将能分的先划分开来(中间的红线,分为了一遍全蓝),然后再来细分(绿线). 决策树优势:为什么业务人喜欢,可以给你决策场景,因为模型可视化高,可以讲故事. 一.起源 最早的决策树算法起源于CLS(Concept Learning System)系统,即概念学习系统.它是最早的决策…
机器学习之决策树一-ID3原理与代码实现
决策树之系列一ID3原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9429257.html 应用实例: 你是否玩过二十个问题的游戏,游戏的规则很简单:参与游戏的一方在脑海里想某个事物,其他参与者向他提问题,只允许提20个问题,问题的答案也只能用对或错回答.问问题的人通过推断分解,逐步缩小待猜测事物的范围.决策树的工作原理与20个问题类似,用户输人一系列数据,然后给出游戏的答案.如下表 假如我告诉…
决策树之ID3,C4.5及CART
决策树的基本认识 决策树学习是应用最广的归纳推理算法之一,是一种逼近离散值函数的方法,年,香农引入了信息熵,将其定义为离散随机事件出现的概率,一个系统越是有序,信息熵就越低,反之一个系统越是混乱,它的信息熵就越高.所以信息熵可以被认为是系统有序化程度的一个度量. 假如一个随机变量的取值为,每一种取到的概率分别是,那么 的熵定义为 意思是一个变量的变化情况可能越多,那么它携带的信息量就越大. 对于分类系统来说,类别是变量,它的取值是,而每一个类别出现的概率分别是 而这里的就是类别的总数,此时分类…
SparkMLlib分类算法之决策树学习
SparkMLlib分类算法之决策树学习 (一) 决策树的基本概念 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画成图形很像一棵树的枝干,故称决策树.在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系.Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵.这一度量是…
机器学习之决策树(ID3)算法
最近刚把<机器学习实战>中的决策树过了一遍,接下来通过书中的实例,来温习决策树构造算法中的ID3算法. 海洋生物数据: 不浮出水面是否可以生存 是否有脚蹼 属于鱼类 1 是 是 是 2 是 是 是 3 是 否 否 4 否 是 否 5 否 是 否 转换成数据集: def createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] labels = ['n…