1. 前言 在前面的博客中讨论了Executor, Driver之间如何汇报Executor生成的Shuffle的数据文件,以及Executor获取到Shuffle的数据文件的分布,那么Executor是如何获取到Shuffle的数据文件进行Action的算子的计算呢? 在ResultTask中,Executor通过MapOutPutTracker向Driver获取了ShuffID的Shuffle数据块的结构,整理成以BlockManangerId为Key的结构,这样可以更容易区分究竟是本地的S…
1. 前言 在博客里介绍了ShuffleWrite关于shuffleMapTask如何运行,输出Shuffle结果到Shuffle_shuffleId_mapId_0.data数据文件中,每个executor需要向Driver汇报当前节点的Shuffle结果状态,Driver保存结果信息进行下个Task的调度. 2. StatusUpdate消息 当Executor运行完Task的时候需要向Driver汇报StatusUpdate的消息 override def statusUpdate(tas…
转载自:https://blog.csdn.net/raintungli/article/details/70807376 当Executor进行reduce运算的时候,生成运算结果的临时Shuffle数据,并保存在磁盘中,被最后的Action算子调用,而这个阶段就是在ShuffleMapTask里执行的. 前面博客中也提到了,用什么ShuffleWrite是由ShuffleHandler来决定的,在这篇博客里主要介绍最常见的SortShuffleWrite的核心算法ExternalSorter…
1 task的内存缓冲调节参数 2 reduce端聚合内存占比 spark.shuffle.file.buffer                     map task的内存缓冲调节参数,默认是32kb spark.shuffle.memoryFraction          reduce端聚合内存占比,默认0.2 怎么判断在什么时候对这两个参数进行调整呢? 通过监控平台查看每个executor的task的shuffle write和shuffle read的运行次数,如果发现这个指标的运…
欢迎转载,转载请注明出处. 概要 Spark 1.1中对spark core的一个重大改进就是引入了sort-based shuffle处理机制,本文就该处理机制的实现进行初步的分析. Sort-based Shuffle之初体验 通过一个小的实验来直观的感受一下sort-based shuffle算法会产生哪些中间文件,具体实验步骤如下所述. 步骤1: 修改conf/spark-default.conf, 加入如下内容 spark.shuffle.manager SORT 步骤2: 运行spa…
一.MapReduce 总体架构 整体的Shuffle过程包含以下几个部分:Map端Shuffle.Sort阶段.Reduce端Shuffle.即是说:Shuffle 过程横跨 map 和 reduce 两端,中间包含 sort 阶段,就是数据从 map task 输出到reduce task输入的这段过程. ----------------------------------------------------------------------------------------------…
CoarseGrainedExecutorBackend 上一篇,我们主要分析了一次作业的提交过程,严格说是在driver端的过程,作业提交之后经过DAGScheduler根据shuffle依赖关系划分成多个stage,依次提交每个stage,将每个stage创建于分区数相同数量的Task,并包装成一个任务集,交给TaskSchedulerImpl进行分配.TaskSchedulerImpl则会根据SchedulerBackEnd提供的计算资源(executor),并考虑任务本地性,黑名单,调度…
目录 Spark(三)角色和搭建 一.Spark集群角色介绍 二.集群的搭建 三.history服务 四.使用spark-submit进行计算Pi 五.Spark On Yarn 六.shell脚本 七.调优 Spark(三)角色和搭建 一.Spark集群角色介绍 详见JerryLead/SparkInternals,他的图解介绍能清晰的讲清楚Spark集群 二.集群的搭建 2.1.架构(图片来源,Spark官网) 一个Driver Program含有一个SparkContext,课由Clust…
之前在 大话Spark(2)里讲过Spark Yarn-Client的运行模式,有同学反馈与Cluster模式没有对比, 这里我重新整理了三张图分别看下Standalone,Yarn-Client 和 Yarn-Cluster的运行流程. 1.独立(Standalone)运行模式  独立运行模式是Spark自身实现的资源调度框架,由客户端.Master节点和多个Worker节点组成.其中SparkContext既可以运行在Master节点上,也可以运行在客户端. Worker节点可以通过Exe…
参考自:Spark部署三种方式介绍:YARN模式.Standalone模式.HA模式http://www.aboutyun.com/forum.php?mod=viewthread&tid=7115(出处: about云开发) 1.Yarn模式由谁来作为客户端提交作业给YARN? 2.SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true ./sbt/sbt assembly的作用是什么? 3.Standalone 模式dist目录的作用是什么? 4.recover…