AUC是指:从一堆样本中随机抽一个,抽到正样本的概率比抽到负样本的概率大的可能性! AUC是一个模型评价指标,只能用于二分类模型的评价,对于二分类模型,还有很多其他评价指标,比如logloss,accuracy,precision.如果你经常关注数据挖掘比赛,比如kaggle,那你会发现AUC和logloss基本是最常见的模型评价指标.为什么AUC和logloss比accuracy更常用呢?因为很多机器学习的模型对分类问题的预测结果都是概率,如果要计算accuracy,需要先把概率转化成类别,这…
评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. 准确率 准确率是最好理解的评价指标,它是一个比值: \[ 准确率 = \cfrac{算法分类正确的数据个数}{输入算法的数据的个数} \] 但是使用准确率评价算法有一个问题,就是在数据的类别不均衡,特别是有极偏的数据存在的情况下,准确率这个评价指标是不能客观评价算法的优劣的.例如下面这个例子: 我们…
小书匠深度学习 分类方法常用的评估模型好坏的方法. 0.预设问题 假设我现在有一个二分类任务,是分析100封邮件是否是垃圾邮件,其中不是垃圾邮件有65封,是垃圾邮件有35封.模型最终给邮件的结论只有两个:是垃圾邮件与 不是垃圾邮件. 经过自己的努力,自己设计了模型,得到了结果,分类结果如下: 不是垃圾邮件70封(其中真实不是垃圾邮件60封,是垃圾邮件有10封) 是垃圾邮件30封(其中真实是垃圾邮件25封,不是垃圾邮件5封) 现在我们设置,不是垃圾邮件.为正样本,是垃圾邮件为负样本 我们一般使用四…
liner classifiers 逻辑回归用在2分类问题上居多.它是一个非线性的回归模型,其最大的好处恰恰是可以解决二元类问题,目前在金融行业,基本都是使用Logistic回归来预判一个用户是否为好客户,因为它还弥补了其他黑盒模型(SVM.神经网络.随机森林等)不具解释性的缺点.知乎 1.logistic 逻辑回归其实是一个分类算法而不是回归算法.通常是利用已知的自变量来预测一个离散型因变量的值(像二进制值0/1,是/否,真/假).简单来说,它就是通过拟合一个逻辑函数(logit fuctio…
数据来自UCI机器学习仓库中的垃圾信息数据集 数据可从http://archive.ics.uci.edu/ml/datasets/sms+spam+collection下载 转成csv载入数据 import matplotlib matplotlib.rcParams['font.sans-serif']=[u'simHei'] matplotlib.rcParams['axes.unicode_minus']=False import pandas as pd import numpy as…
ROC 曲线:接收者操作特征曲线(receiver operating characteristic curve),是反映敏感性和特异性连续变量的综合指标,roc 曲线上每个点反映着对同一信号刺激的感受性. 对于分类器或者说分类算法,评价指标主要有precision,recall,F1 score等,以及这里要讨论的ROC和AUC.下图是一个 ROC 曲线的示例: 横坐标:Sensitivity,伪正类率(False positive rate, FPR),预测为正但实际为负的样本占所有负例样本…
二分类模型的预测结果分为四种情况(正类为1,反类为0): TP(True Positive):预测为正类,且预测正确(真实为1,预测也为1) FP(False Positive):预测为正类,但预测错误(真实为0,预测为1) TN(True Negative):预测为负类,且预测正确(真实为0,预测也为0) FN(False Negative):预测为负类,但预测错误(真实为1,预测为0) TP+FP+TN+FN=测试集所有样本数量. 分类模型的性能评价指标(Performance Evalua…
让我们从头说起,首先AUC是一种用来度量分类模型好坏的一个标准.这样的标准其实有很多,例如:大约10年前在machine learning文献中一统天下的标准:分类精度:在信息检索(IR)领域中常用的recall和precision,等等.其实,度量反应了人们对” 好”的分类结果的追求,同一时期的不同的度量反映了人们对什么是”好”这个最根本问题的不同认识,而不同时期流行的度量则反映了人们认识事物的深度的变 化.近年来,随着machine learning的相关技术从实验室走向实际应用,一些实际的…
AUC是一种用来度量分类模型好坏的一个标准. ROC分析是从医疗分析领域引入了一种新的分类模型performance评判方法. ROC的全名叫做Receiver Operating Characteristic,其主要分析工具是一个画在二维平面上的曲线——ROC curve.平面的横坐标是false positive rate(FPR),纵坐标是true positive rate(TPR).对某个分类器而言,我们可以根据其在测试样本上的表现得到一个TPR和FPR点对.这样,此分类器就可以映射成…
AUC是一种用来度量分类模型好坏的一个标准. ROC分析是从医疗分析领域引入了一种新的分类模型performance评判方法. ROC的全名叫做Receiver Operating Characteristic,其主要分析工具是一个画在二维平面上的曲线——ROC curve.平面的横坐标是false positive rate(FPR),纵坐标是true positive rate(TPR).对某个分类器而言,我们可以根据其在测试样本上的表现得到一个TPR和FPR点对.这样,此分类器就可以映射成…