在Spark 1.2.0中,Spark Core的一个重要的升级就是将默认的Hash Based Shuffle换成了Sort Based Shuffle,即spark.shuffle.manager 从hash换成了sort,对应的实现类分别是org.apache.spark.shuffle.hash.HashShuffleManager和org.apache.spark.shuffle.sort.SortShuffleManager. 这个方式的选择是在org.apache.spark.Sp…
通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群:Master通过借助ZK,可以简单的实现HA:而应用方通过SparkContext这个与集群的交互接口,在创建SparkContext时就完成了Application的注册,Master为其分配Executor:在应用方创建了RDD并且在这个RDD上进行了很多的Transformation后,触发action,通过DAGScheduler将DAG划分…
通过上面的架构和源码实现的分析,不难得出Shuffle是Spark Core比较复杂的模块的结论.它也是非常影响性能的操作之一.因此,在这里整理了会影响Shuffle性能的各项配置.尽管大部分的配置项在前文已经解释过它的含义,由于这些参数的确是非常重要,这里算是做一个详细的总结. 1.1.1  spark.shuffle.manager 前文也多次提到过,Spark1.2.0官方支持两种方式的Shuffle,即Hash Based Shuffle和Sort Based Shuffle.其中在Sp…
在Spark 0.6和0.7时,Shuffle的结果都需要先存储到内存中(有可能要写入磁盘),因此对于大数据量的情况下,发生GC和OOM的概率非常大.因此在Spark 0.8的时候,Shuffle的每个record都会直接写入磁盘,并且为下游的每个Task都生成一个单独的文件.这样解决了Shuffle解决都需要存入内存的问题,但是又引入了另外一个问题:生成的小文件过多,尤其在每个文件的数据量不大而文件特别多的时候,大量的随机读会非常影响性能.Spark 0.8.1为了解决0.8中引入的问题,引入…
首先介绍一下需要实现的接口.框架的类图如图所示(今天CSDN抽风,竟然上传不了图片.如果需要实现新的Shuffle机制,那么需要实现这些接口. 1.1.1  org.apache.spark.shuffle.ShuffleManager Driver和每个Executor都会持有一个ShuffleManager,这个ShuffleManager可以通过配置项spark.shuffle.manager指定,并且由SparkEnv创建.Driver中的ShuffleManager负责注册Shuffl…
在上文<Spark技术内幕:Stage划分及提交源码分析>中,我们分析了Stage的生成和提交.但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑,即需要按照顺序计算的Stage,Stage中包含了可以以partition为单位并行计算的Task.我们并没有分析Stage中得Task是如何生成并且最终提交到Executor中去的. 这就是本文的主题. 从org.apache.spark.scheduler.DAGScheduler#submitMissi…
分布式系统里的Shuffle 阶段往往是非常复杂的,而且分支条件也多,我只能按着我关注的线去描述.肯定会有不少谬误之处,我会根据自己理解的深入,不断更新这篇文章. 前言 借用和董神的一段对话说下背景: shuffle共有三种,别人讨论的是hash shuffle,这是最原始的实现,曾经有两个版本,第一版是每个map产生r个文件,一共产生mr个文件,由于产生的中间文件太大影响扩展性,社区提出了第二个优化版本,让一个core上map共用文件,减少文件数目,这样共产生corer个文件,好多了,但中间文…
在上文<Spark技术内幕:Stage划分及提交源代码分析>中,我们分析了Stage的生成和提交.可是Stage的提交,仅仅是DAGScheduler完毕了对DAG的划分,生成了一个计算拓扑,即须要依照顺序计算的Stage,Stage中包括了能够以partition为单位并行计算的Task.我们并没有分析Stage中得Task是怎样生成而且终于提交到Executor中去的. 这就是本文的主题. 从org.apache.spark.scheduler.DAGScheduler#submitMis…
http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache.spark.rdd.RDD#count org.apache.spark.SparkContext#runJob org.apache.spark.scheduler.DAGScheduler#runJob org.apache.spark.scheduler.DAGScheduler#submit…
从Spark-1.2.0开始,Spark的Shuffle由Hash Based Shuffle升级成了Sort Based Shuffle.即Spark.shuffle.manager从Hash换成了Sort.不同形式的Shuffle逻辑主要是ShuffleManager的实现类不同. 在org.apache.spark.SparkEnv类中: // Let the user specify short names for shuffle managers val shortShuffleMgr…