sigmoid_cross_entropy_with_logits】的更多相关文章

sigmoid_cross_entropy_with_logits 原创文章,请勿转载!!! 函数定义 def sigmoid_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, name=None): 函数意义 这个函数的作用是计算经sigmoid 函数激活之后的交叉熵. 为了描述简洁,我们规定 x = logits,z = targets,那么 Logistic 损失值为: \[x - x * z + log…
tf.nn.sigmoid_cross_entropy_with_logits sigmoid_cross_entropy_with_logits( _sentinel=None, labels=None, logits=None, name=None ) 功能说明: 先对 logits 通过 sigmoid 计算,再计算交叉熵,交叉熵代价函数可以参考 CS231n: Convolutional Neural Networks for Visual Recognition 参数列表: 参数名 必…
tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,labels=None, logits=None, name=None) sigmoid_cross_entropy_with_logits详解 这个函数的输入是logits和targets,logits就是神经网络模型中的 W * X矩阵,注意不需要经过sigmoid,而targets的shape和logits相同,就是正确的label值,例如这个模型一次要判断100张图是否包含10种…
tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,,labels=None,logits=None,name=None) logits和labels必须有相同的类型和大小 参数: _sentinel:内部的并不使用 labels:和logits的shape和type一样 logits:类型为float32或者float64 name:操作的名称,可省 返回的是:一个张量,和logits的大小一致.是逻辑损失 sample import…
验证码是根据随机字符生成一幅图片,然后在图片中加入干扰象素,用户必须手动填入,防止有人利用机器人自动批量注册.灌水.发垃圾广告等等 . 验证码的作用是验证用户是真人还是机器人:设计理念是对人友好,对机器难. 上图是常见的字符验证码,还有一些验证码使用提问的方式. 我们先来看看破解验证码的几种方式: 人力打码(基本上,打码任务都是大型网站的验证码,用于自动化注册等等) 找到能过验证码的漏洞 最后一种是字符识别,这是本帖的关注点 我上网查了查,用Tesseract OCR.OpenCV等等其它方法都…
这里做了一些小的修改,感谢谷歌rd的帮助,使得能够统一处理dense的数据,或者类似文本分类这样sparse的输入数据.后续会做进一步学习优化,比如如何多线程处理. 具体如何处理sparse 主要是使用embedding_lookup_sparse,参考 https://github.com/tensorflow/tensorflow/issues/342 两个文件 melt.py binary_classification.py 代码和数据已经上传到 https://github.com/ch…
只是简单demo, 可以看出tensorflow非常简洁,适合快速实验     import tensorflow as tf import numpy as np import melt_dataset import sys from sklearn.metrics import roc_auc_score     def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01))     def…
首先 实现一个尽可能少调用tf.nn模块儿的,自己手写相关的function     import tensorflow as tf import numpy as np import melt_dataset import sys from sklearn.metrics import roc_auc_score     def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01))     d…
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码: from __future__ import absolute_import # 绝对导入 from __future__ import division # 精确除法,/是精确除,//是取整除 from __future__ import print_function # 打印函数…
在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保存训练过程中采样器的采样图片,在 train.py 中输入如下代码: # -*- coding: utf-8 -*- import tensorflow as tf import os from read_data import * from utils import * from ops impo…