[BJOI 2010]次小生成树Tree】的更多相关文章

Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值)  这下小 C 蒙了,他找到了你,希望你帮他解决这个问题. Input 第一行包含两个整数N 和M,表示无向图…
做一次MST, 枚举不在最小生成树上的每一条边(u,v), 然后加上这条边, 删掉(u,v)上的最大边(或严格次大边), 更新答案. 树链剖分然后ST维护最大值和严格次大值..倍增也是可以的... ------------------------------------------------------------------------------ #include<bits/stdc++.h>   using namespace std;   #define b(i) (1 <&l…
1977: [BeiJing2010组队]次小生成树 Tree https://lydsy.com/JudgeOnline/problem.php?id=1977 题意: 求严格次小生成树,即边权和不能等于最小生成树. 分析: 倍增:求出最小生成树,然后枚举非树边,加入一条非树边,删掉环上的最大的边,如果最大的边等于加入的边,那么删掉环上次小的边. LCT:直接维护链上最大值,与次大值. 代码: 倍增 #include<bits/stdc++.h> using namespace std; t…
[BZOJ1977][BeiJing2010组队]次小生成树 Tree Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值)  这下小 C 蒙了,他找到了你,希望…
1977: [BeiJing2010组队]次小生成树 Tree Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 5168  Solved: 1668[Submit][Status][Discuss] Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次…
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小生成树弄出来,因为要求次小生成树.至于为什么次小一定只在最小的基础上改变了一条边,我也不会严谨的证明......打表找规律大法好 剩下的可以有一堆数据结构来维护最大值和次大值(原理两位巨佬都讲清楚了,这里只分析一下算法的优劣) kruscal+倍增+LCA 山楠巨佬的做法,我也写了这一种.复杂度\(…
话说这个[BeiJing2010组队]是个什喵玩意? 这是一道严格次小生成树,而次小生成树的做法是层出不穷的 MATO IS NO.1 的博客里对两种算法都有很好的解释,值得拥有:  (果然除我以外,所有自称傻 X 的都是神犇喵~) http://www.cppblog.com/MatoNo1/archive/2011/05/29/147627.aspx MATO还讲了一个神级复杂度的次小生成树:  (请全部读完.如果被坑,后果自负) http://www.cppblog.com/MatoNo1…
Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值) 这下小 C 蒙了,他找到了你,希望你帮他解决这个问题. Input 第一行包含两个整数N 和M,表示无向图的…
严格次小生成树 首先看看如果不严格我们怎么办. 非严格次小生成树怎么做 由此,我们发现一个结论,求非严格次小生成树,只需要先用kruskal算法求得最小生成树,然后暴力枚举非树边,替换路径最大边即可. 那要是严格呢? 我们发现如果是严格的次小生成树,那么将一条边替换另一条时,这两条边的权值一定不相同 但是,我们知道,替换边肯定大于等于被替换边(因为如果替换边小于被替换边,就存在一颗包含替换边而不包含被替换边的一棵权值更小的生成树,原树就不是最小生成树了) 所以替换边要么等于路径上最大的边,要么比…
描述: 就是求一个次小生成树的边权和 传送门 题解 我们先构造一个最小生成树, 把树上的边记录下来. 然后再枚举每条非树边(u, v, val),在树上找出u 到v 路径上的最小边$g_0$ 和 严格次小边 $g_1$ 如果$val > g_0$就可以考虑把$g_0$ 替换成$val$ 并记录答案. 如果$val = g_0$ 就把$g_1$替换成$val$ 记录答案. 然后我们就需要快速求出树链上的最小和次小边, 需要用树上倍增求LCA类似的方法求. 定义$g[0][ i ][ j ]$ 表示…
传送门 一道比较综合的好题. 由于是求严格的次小生成树. 我们需要维护一条路径上的最小值和次小值. 其中最小值和次小值不能相同. 由于不喜欢倍增我选择了用树链剖分维护. 代码: #include<bits/stdc++.h> #define N 100005 #define M 300005 #define lc (p<<1) #define rc (p<<1|1) #define mid (T[p].l+T[p].r>>1) #define ll long…
Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值) 这下小 C 蒙了,他找到了你,希望你帮他解决这个问题. Input 第一行包含两个整数N 和M,表示无向图的…
题目描述 求一张图的严格次小生成树的边权和,保证存在. 输入 第一行包含两个整数N 和M,表示无向图的点数与边数. 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z. 输出 包含一行,仅一个数,表示严格次小生成树的边权和.(数据保证必定存在严格次小生成树) 样例输入 5 6 1 2 1 1 3 2 2 4 3 3 5 4 3 4 3 4 5 6 样例输出 11 题解 最小生成树+权值线段树合并 首先有一个常用的结论:次小生成树(无论是否严格)只要存在,则一定可…
Brief Description 求一个无向图的严格次小生成树. Algorithm Design 考察最小生成树的生成过程.对于一个非树边而言,如果我们使用这一条非树边去替换原MST的路径上的最大边,可以证明仍然满足生成树性质,而且这个生成树的大小一定不小于原生成树,那么枚举所有这样的非树边,尝试去替换,找到最小值就可以了. 那么问题就转化成了求树上两个点的最大/最小距离,这是树上倍增的经典应用,可以知道: \[Max(x,i) = max(Max(x,i-1), Max(fa(x,i-1)…
小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值) \sum_{e \in E_M}value(e)<\sum_{e \in E_S}value(e)∑e∈EM​​value(e)<∑e∈ES​​value(e) 这下小…
次小生成树Treehttps://www.luogu.org/problemnew/show/P4180 题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值) \[∑e∈EMvalue(e)<∑e∈ESvalue(e…
题目:求一个无向图的严格次小生成树(即次小生成树的边权和严格小于最小生成树的边权和) 首先求出图中的最小生成树.任意加一条树外边都会导致环的出现.我们现在目标是在树外边集合B中,找到边b∈B,a∈b所在环,b->weight - a->weight最小且不为0. 首先,依题意,a->weight应当是环内所有边中最大或第二大(最大可能a->weight==b->weight)的.如何找呢?我们采用树上倍增的方法.定义cur->Elder[k]为cur的第k辈祖先,Max…
题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值) \sum_{e \in E_M}value(e)<\sum_{e \in E_S}value(e)∑e∈EM​​value(e)<∑e∈ES​​value(e)…
题目描述: 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是$E_M$,严格次小生成树选择的边集是$E_S$,那么需要满足:($value(e)$表示边e的权值) 这下小 C 蒙了,他找到了你,希望你帮他解决这个问题. 输入输出格式: 输入格式: 第一行包含两个整数N和M,表示无向图的点数与边数.接下来M行…
和倍增法求lca差不多,维护每个点往上跳2^i步能到达的点,以及之间的边的最大值和次大值,先求出最小生成树,对于每个非树边枚举其端点在树上的路径的最大值,如果最大值和非树边权值一样则找次大值,然后维护答案即可. 代码 #include<cstdio> #include<algorithm> using namespace std; ; ; ; int f[N],n,m,i; int dp,p[N],pre[M],tt[M],ww[M],flag[M]; ],mi[N][],Mi[N…
题目链接 构建完MST后,枚举非树边(u,v,w),在树上u->v的路径中找一条权值最大的边(权为maxn),替换掉它 这样在 w=maxn 时显然不能满足严格次小.但是这个w可以替换掉树上严格小于maxn的次大边 用倍增维护MST上路径的最大值.次大值,每条非树边的查询复杂度就为O(logn) ps:1.倍增更新次大值时,未必是从最大值转移,要先赋值较大的次大值,再与较小的那个最大值比较. 2.maxn!=w时,是可以从maxn更新的(不能更新就是上面情况啊) 倍增处理部分我还是在dfs里写吧…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1977 kruscal别忘了先按边权sort.自己觉得那部分处理得还挺好的.(联想到之前某题的经验) 没管重边.好像还行? #include<iostream> #include<cstdio> #include<cstring> #include<queue> #include<algorithm> #define ll long long…
好吧我太菜了又调了一晚上...QAQ 先跑出最小生成树,标记树边,再用树上倍增的思路,预处理出: f[u][i] :距离u为2^i的祖先 h[u][i][0/1] :距u点在2^i范围内的最长边和次长边 然后枚举每一条非树边(u,v),会与原先的最小生成树构成一个环,而之前预处理出的数据可以快速找到(u,v)在最小生成树上的最大和次大边,来更新答案 #include<cstdio> #include<iostream> #include<cstring> #includ…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1977 因为严格,所以要记录到 LCA 的一个次小值: 很快写好,然后改掉一堆错误后终于过了样例!然而交上去1WA: 又改了半天,还是WA,于是放弃,抄题解好久... 然而就在我调了一个小时终于锁定错误就在那个子函数里的时候才突然看到了自己的明显惊天大错误是怎么回事??!!!稍微改了一下下就完美AC... 不过还有点收获,把求各种层次的 f 放在 dfs 函数里会比单独拿出来再求一遍快 10…
严格次小生成树,关键是“严格”,如果是不严格的其实只需要枚举每条不在最小生成树的边,如果得到边权和大于等于最小生成树的结束就行.原理就是因为Kruskal非常贪心,只要随便改一条边就能得到一个非严格的次小生成树.然而是严格的QAQ,于是得搞点别的东西来实现“严格”,维护个次大值就行.依次枚举每条边,如果这条边和加上这条边构成的环中最大的边边权相等,取次大值,否则取最大值. 参考代码: #include<cstdio> #include<algorithm> #define ll l…
[题目链接] 点击打开链接 [算法] 首先,有一个结论 : 一定有一棵严格次小生成树是在最小生成树的基础上去掉一条边,再加上一条边 这个结论的正确性是显然的 我们先用kruskal算法求出最小生成树,然后,枚举不在最小生成树上的边,我们发现若加上这条边, 则形成了一个环,用最小生成树的权值和加上这条边的权值再减去在这个环上且在最小生成树上权值 最大的边即为包括这条边的最小生成树的权值和 那么,树上倍增可以解决这个问题 因为是要求严格最小,所以我们不仅要记录最大值,还要记录次大值 时间复杂度 :…
The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spanning Tree): Consider a connected, undir…
Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22335   Accepted: 7922 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spanning Tree): Consider a connected, undirected graph G =…
The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25203   Accepted: 8995 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spanning Tree): Consider a connected, undire…
Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following…