tensorflow里面共享变量.name_scope, variable_scope等如何理解 name_scope, variable_scope目的:1 减少训练参数的个数. 2 区别同名变量 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1.也就是说,生成图像和真实图像经过判别器的时候,要共…
在训练深度网络时,为了减少需要训练参数的个数(比如LSTM模型),或者是多机多卡并行化训练大数据.大模型等情况时,往往就需要共享变量.另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要.因此,tensorflow中用tf.Variable(), tf.get_variable, tf.Variable_scope(), tf.name_scope() 几个函数来实现: tf.Variable…
ValueError: Variable conv1/weights1 already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at: 在使用tensorflow 中的tf.variable_scope和tf.get_variable搭建网络时,重复运行程序会报以上的ValueError错误,这是因为第二次运行时,内存中已经存在名字相同的层或者参数,发生了冲突,所以会提示…
tensorflow中有很多需要变量共享的场合,比如在多个GPU上训练网络时网络参数和训练数据就需要共享. tf通过 tf.get_variable() 可以建立或者获取一个共享的变量. tf.get_variable函数的作用从tf的注释里就可以看出来-- 'Gets an existing variable with this name or create a new one'. 与 tf.get_variable 函数相对的还有一个 tf.Variable 函数,两者的区别是: tf.Va…
Tensorflow是一个编程模型,几乎成为了一种编程语言(里面有变量.有操作......). Tensorflow编程分为两个阶段:构图阶段+运行时. Tensorflow构图阶段其实就是在对图进行一些描述性语言,跟html很像,很适合用标记性语言来描述. Tensorflow是有向图,是一个有向无环图.张量为边,操作为点,数据在图中流动. Tensorflow为每个结点都起了唯一的一个名字. import tensorflow as tf a = tf.constant(3) # name=…
**************input************** [[[[-0.36166722  0.04847232  1.20818889 -0.1794038  -0.53244466] [-0.67821187 -1.81838071  0.59005165 -1.17246294  0.33203208] [-0.18631086 -0.68608224  0.07464688  0.28875718 -0.86492658]] [[ 1.63322294  0.99059737 …
1.函数及参数:tf.nn.conv2d conv2d( input, filter, strides, padding, use_cudnn_on_gpu=True, data_format='NHWC', name=None) 卷积的原理可参考 A guide to convolution arithmetic for deep learning 参数列表: 参数名 必选 类型 说明 input 是 tensor 是一个 4 维的 tensor,即 [ batch, in_height, i…
首先,这个对应的proto就是 然后config里面的image_resizer等等 就是proto里面的image_resizer 等等,对应的参数可以在proto里面寻找解释和默认值以及类型 再比如这里的train_config就对应train.proto 里面的各个参数也是对应的,都可以找到解释…
说说计划 不知不觉写到了第七篇,理一下思路: 学会基本的概念,了解什么是什么不是,当前的位置在哪,要去哪.这是第一篇希望做到的.同时第一篇和第二篇的开始部分,非常谨慎的考虑了非IT专业的读者.希望借此沟通技术人员和产品人员,甚至管理和销售人员.我信服"上下同欲者胜",所以也非常害怕因为大家对概念完全不同的理解而影响到团队的合作. 从最简单的部分入手,由概念到代码,完成技术破冰.这是第二.三篇希望做到的. 逐步迭代,从简单概念到复杂概念,从简单算法到复杂算法,接触到机器学习现实最常用的技…
一.上下文管理器(context manager) 上下文管理器是实现了上下文协议的对象,主要用于资源的获取与释放.上下文协议包括__enter__.__exit__,简单说就是,具备__enter__()和__exit__()方法的类就可以实现上下文管理,做到文件的自动关闭,这样的类实例化的对象就是上下文管理器. 典型的例子就是读写文件的操作.使用open()函数打开文件,操作之后再用close()函数关闭文件.如果使用上下文管理器的的话就会简洁方便些,因为File()类内部包含有__ente…